This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346339 #6 Jul 31 2021 19:00:54 %S A346339 55542,120350,143507,167241,182549,192233,202890,326685,327986,328247, %T A346339 329028,329809,333257,351722,358474,358968,359210,359538,359813, %U A346339 365404,367071,367313,374034,374846,375627,376619,377158,379259,381157,383910,384765,390396 %N A346339 Numbers that are the sum of nine fifth powers in exactly four ways. %C A346339 Differs from A345621 at term 37 because 392063 = 2^5 + 2^5 + 4^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5 = 2^5 + 2^5 + 3^5 + 3^5 + 6^5 + 7^5 + 9^5 + 9^5 + 12^5 = 2^5 + 2^5 + 4^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 1^5 + 2^5 + 3^5 + 4^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5 = 1^5 + 1^5 + 1^5 + 3^5 + 8^5 + 9^5 + 10^5 + 10^5 + 10^5. %H A346339 Sean A. Irvine, <a href="/A346339/b346339.txt">Table of n, a(n) for n = 1..10000</a> %e A346339 55542 is a term because 55542 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 8^5 = 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 5^5 + 7^5 + 7^5 + 7^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 7^5. %o A346339 (Python) %o A346339 from itertools import combinations_with_replacement as cwr %o A346339 from collections import defaultdict %o A346339 keep = defaultdict(lambda: 0) %o A346339 power_terms = [x**5 for x in range(1, 1000)] %o A346339 for pos in cwr(power_terms, 9): %o A346339 tot = sum(pos) %o A346339 keep[tot] += 1 %o A346339 rets = sorted([k for k, v in keep.items() if v == 4]) %o A346339 for x in range(len(rets)): %o A346339 print(rets[x]) %Y A346339 Cf. A345621, A345846, A346329, A346338, A346340, A346349. %K A346339 nonn %O A346339 1,1 %A A346339 _David Consiglio, Jr._, Jul 13 2021