cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346341 Numbers that are the sum of nine fifth powers in exactly six ways.

This page as a plain text file.
%I A346341 #6 Jul 31 2021 19:01:00
%S A346341 926404,936607,952896,985421,993574,993605,993816,1075779,1123321,
%T A346341 1133344,1134367,1151406,1160105,1166111,1177144,1206514,1209669,
%U A346341 1209847,1215545,1225630,1251130,1264929,1265320,1278611,1414834,1422367,1422609,1430384,1431367
%N A346341 Numbers that are the sum of nine fifth powers in exactly six ways.
%C A346341 Differs from A345623 at term 30 because 1431398 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 7^5 + 10^5 + 12^5 + 16^5 = 1^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 2^5 + 3^5 + 4^5 + 4^5 + 7^5 + 8^5 + 12^5 + 13^5 + 15^5 = 1^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 1^5 + 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5.
%H A346341 Sean A. Irvine, <a href="/A346341/b346341.txt">Table of n, a(n) for n = 1..10000</a>
%e A346341 926404 is a term because 926404 = 2^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 8^5 + 10^5 + 15^5 = 2^5 + 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 10^5 + 15^5 = 2^5 + 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 + 15^5 = 2^5 + 2^5 + 2^5 + 7^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 = 2^5 + 2^5 + 2^5 + 6^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5 = 1^5 + 1^5 + 4^5 + 4^5 + 7^5 + 11^5 + 12^5 + 12^5 + 12^5.
%o A346341 (Python)
%o A346341 from itertools import combinations_with_replacement as cwr
%o A346341 from collections import defaultdict
%o A346341 keep = defaultdict(lambda: 0)
%o A346341 power_terms = [x**5 for x in range(1, 1000)]
%o A346341 for pos in cwr(power_terms, 9):
%o A346341     tot = sum(pos)
%o A346341     keep[tot] += 1
%o A346341     rets = sorted([k for k, v in keep.items() if v == 6])
%o A346341     for x in range(len(rets)):
%o A346341         print(rets[x])
%Y A346341 Cf. A345623, A345848, A346331, A346340, A346342, A346351.
%K A346341 nonn
%O A346341 1,1
%A A346341 _David Consiglio, Jr._, Jul 13 2021