cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346342 Numbers that are the sum of nine fifth powers in exactly seven ways.

This page as a plain text file.
%I A346342 #6 Jul 31 2021 19:01:04
%S A346342 1431429,1439173,1447570,1504636,1597929,1671167,1696159,1697686,
%T A346342 1697928,1778835,1936454,1975049,2017344,2092122,2182161,2198967,
%U A346342 2208680,2280818,2283911,2289343,2314335,2329845,2340319,2345806,2362370,2388651,2497771,2529407,2530672
%N A346342 Numbers that are the sum of nine fifth powers in exactly seven ways.
%C A346342 Differs from A345624 at term 1 because 1431398 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 7^5 + 10^5 + 12^5 + 16^5 = 1^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 2^5 + 3^5 + 4^5 + 4^5 + 7^5 + 8^5 + 12^5 + 13^5 + 15^5 = 1^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 1^5 + 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5.
%H A346342 Sean A. Irvine, <a href="/A346342/b346342.txt">Table of n, a(n) for n = 1..10000</a>
%e A346342 1431398 is a term because 1431398 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 7^5 + 10^5 + 12^5 + 16^5 = 1^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 2^5 + 3^5 + 4^5 + 4^5 + 7^5 + 8^5 + 12^5 + 13^5 + 15^5 = 1^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 1^5 + 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5.
%o A346342 (Python)
%o A346342 from itertools import combinations_with_replacement as cwr
%o A346342 from collections import defaultdict
%o A346342 keep = defaultdict(lambda: 0)
%o A346342 power_terms = [x**5 for x in range(1, 1000)]
%o A346342 for pos in cwr(power_terms, 9):
%o A346342     tot = sum(pos)
%o A346342     keep[tot] += 1
%o A346342     rets = sorted([k for k, v in keep.items() if v == 7])
%o A346342     for x in range(len(rets)):
%o A346342         print(rets[x])
%Y A346342 Cf. A345624, A345849, A346332, A346341, A346343, A346352.
%K A346342 nonn
%O A346342 1,1
%A A346342 _David Consiglio, Jr._, Jul 13 2021