cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346343 Numbers that are the sum of nine fifth powers in exactly eight ways.

This page as a plain text file.
%I A346343 #6 Jul 31 2021 19:01:07
%S A346343 1431398,1431640,1531397,1952415,2247917,2530399,2652563,2652860,
%T A346343 2736790,2851254,2965588,3088909,3148674,3273590,3297416,3329120,
%U A346343 3329362,3332244,3336895,3345442,3345653,3361614,3362217,3364738,3553641,3571549,3577951,3609926,3610155
%N A346343 Numbers that are the sum of nine fifth powers in exactly eight ways.
%C A346343 Differs from A345625 at term 5 because 1969221 = 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 + 16^5 = 3^5 + 5^5 + 6^5 + 6^5 + 8^5 + 12^5 + 12^5 + 13^5 + 16^5 = 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 12^5 + 12^5 + 13^5 + 16^5 = 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 15^5 = 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 14^5 + 15^5 = 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 14^5 + 15^5 = 1^5 + 4^5 + 5^5 + 8^5 + 9^5 + 13^5 + 13^5 + 13^5 + 15^5 = 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 + 14^5 = 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5 + 14^5.
%H A346343 Sean A. Irvine, <a href="/A346343/b346343.txt">Table of n, a(n) for n = 1..10000</a>
%e A346343 1431398 is a term because 1431398 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 7^5 + 10^5 + 12^5 + 16^5 = 1^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 2^5 + 3^5 + 4^5 + 4^5 + 7^5 + 8^5 + 12^5 + 13^5 + 15^5 = 1^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 1^5 + 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5.
%o A346343 (Python)
%o A346343 from itertools import combinations_with_replacement as cwr
%o A346343 from collections import defaultdict
%o A346343 keep = defaultdict(lambda: 0)
%o A346343 power_terms = [x**5 for x in range(1, 1000)]
%o A346343 for pos in cwr(power_terms, 9):
%o A346343     tot = sum(pos)
%o A346343     keep[tot] += 1
%o A346343     rets = sorted([k for k, v in keep.items() if v == 8])
%o A346343     for x in range(len(rets)):
%o A346343         print(rets[x])
%Y A346343 Cf. A345625, A345850, A346333, A346342, A346344, A346353.
%K A346343 nonn
%O A346343 1,1
%A A346343 _David Consiglio, Jr._, Jul 13 2021