This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346344 #6 Jul 31 2021 19:01:12 %S A346344 1969221,2596936,3353186,3378178,3923426,3981447,4094027,4096729, %T A346344 4112329,4114188,4129465,4137209,4147736,4170112,4172994,4254304, %U A346344 4303773,4410482,4475846,4477936,4483379,4485480,4501441,4543232,4652011,4691855,4724015,4733970,4750241 %N A346344 Numbers that are the sum of nine fifth powers in exactly nine ways. %C A346344 Differs from A345626 at term 14 because 4157156 = 1^5 + 2^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 9^5 + 21^5 = 1^5 + 1^5 + 3^5 + 4^5 + 5^5 + 5^5 + 8^5 + 8^5 + 21^5 = 1^5 + 4^5 + 4^5 + 8^5 + 10^5 + 12^5 + 12^5 + 16^5 + 19^5 = 1^5 + 4^5 + 4^5 + 8^5 + 8^5 + 14^5 + 14^5 + 14^5 + 19^5 = 5^5 + 5^5 + 5^5 + 5^5 + 7^5 + 9^5 + 15^5 + 17^5 + 18^5 = 3^5 + 3^5 + 5^5 + 6^5 + 9^5 + 10^5 + 16^5 + 16^5 + 18^5 = 1^5 + 1^5 + 5^5 + 5^5 + 13^5 + 13^5 + 15^5 + 15^5 + 18^5 = 2^5 + 3^5 + 4^5 + 4^5 + 10^5 + 14^5 + 16^5 + 16^5 + 17^5 = 11^5 + 11^5 + 12^5 + 12^5 + 12^5 + 12^5 + 13^5 + 16^5 + 17^5 = 2^5 + 2^5 + 2^5 + 5^5 + 12^5 + 15^5 + 16^5 + 16^5 + 16^5. %H A346344 Sean A. Irvine, <a href="/A346344/b346344.txt">Table of n, a(n) for n = 1..10000</a> %e A346344 1969221 is a term because 1969221 = 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 + 16^5 = 3^5 + 5^5 + 6^5 + 6^5 + 8^5 + 12^5 + 12^5 + 13^5 + 16^5 = 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 12^5 + 12^5 + 13^5 + 16^5 = 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 15^5 = 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 14^5 + 15^5 = 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 14^5 + 15^5 = 1^5 + 4^5 + 5^5 + 8^5 + 9^5 + 13^5 + 13^5 + 13^5 + 15^5 = 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 + 14^5 = 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5 + 14^5. %o A346344 (Python) %o A346344 from itertools import combinations_with_replacement as cwr %o A346344 from collections import defaultdict %o A346344 keep = defaultdict(lambda: 0) %o A346344 power_terms = [x**5 for x in range(1, 1000)] %o A346344 for pos in cwr(power_terms, 9): %o A346344 tot = sum(pos) %o A346344 keep[tot] += 1 %o A346344 rets = sorted([k for k, v in keep.items() if v == 9]) %o A346344 for x in range(len(rets)): %o A346344 print(rets[x]) %Y A346344 Cf. A345626, A345851, A346334, A346343, A346345, A346354. %K A346344 nonn %O A346344 1,1 %A A346344 _David Consiglio, Jr._, Jul 13 2021