cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346344 Numbers that are the sum of nine fifth powers in exactly nine ways.

This page as a plain text file.
%I A346344 #6 Jul 31 2021 19:01:12
%S A346344 1969221,2596936,3353186,3378178,3923426,3981447,4094027,4096729,
%T A346344 4112329,4114188,4129465,4137209,4147736,4170112,4172994,4254304,
%U A346344 4303773,4410482,4475846,4477936,4483379,4485480,4501441,4543232,4652011,4691855,4724015,4733970,4750241
%N A346344 Numbers that are the sum of nine fifth powers in exactly nine ways.
%C A346344 Differs from A345626 at term 14 because 4157156 = 1^5 + 2^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 9^5 + 21^5 = 1^5 + 1^5 + 3^5 + 4^5 + 5^5 + 5^5 + 8^5 + 8^5 + 21^5 = 1^5 + 4^5 + 4^5 + 8^5 + 10^5 + 12^5 + 12^5 + 16^5 + 19^5 = 1^5 + 4^5 + 4^5 + 8^5 + 8^5 + 14^5 + 14^5 + 14^5 + 19^5 = 5^5 + 5^5 + 5^5 + 5^5 + 7^5 + 9^5 + 15^5 + 17^5 + 18^5 = 3^5 + 3^5 + 5^5 + 6^5 + 9^5 + 10^5 + 16^5 + 16^5 + 18^5 = 1^5 + 1^5 + 5^5 + 5^5 + 13^5 + 13^5 + 15^5 + 15^5 + 18^5 = 2^5 + 3^5 + 4^5 + 4^5 + 10^5 + 14^5 + 16^5 + 16^5 + 17^5 = 11^5 + 11^5 + 12^5 + 12^5 + 12^5 + 12^5 + 13^5 + 16^5 + 17^5 = 2^5 + 2^5 + 2^5 + 5^5 + 12^5 + 15^5 + 16^5 + 16^5 + 16^5.
%H A346344 Sean A. Irvine, <a href="/A346344/b346344.txt">Table of n, a(n) for n = 1..10000</a>
%e A346344 1969221 is a term because 1969221 = 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 + 16^5 = 3^5 + 5^5 + 6^5 + 6^5 + 8^5 + 12^5 + 12^5 + 13^5 + 16^5 = 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 12^5 + 12^5 + 13^5 + 16^5 = 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 15^5 = 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 14^5 + 15^5 = 2^5 + 2^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 14^5 + 15^5 = 1^5 + 4^5 + 5^5 + 8^5 + 9^5 + 13^5 + 13^5 + 13^5 + 15^5 = 1^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 + 14^5 = 1^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5 + 14^5.
%o A346344 (Python)
%o A346344 from itertools import combinations_with_replacement as cwr
%o A346344 from collections import defaultdict
%o A346344 keep = defaultdict(lambda: 0)
%o A346344 power_terms = [x**5 for x in range(1, 1000)]
%o A346344 for pos in cwr(power_terms, 9):
%o A346344     tot = sum(pos)
%o A346344     keep[tot] += 1
%o A346344     rets = sorted([k for k, v in keep.items() if v == 9])
%o A346344     for x in range(len(rets)):
%o A346344         print(rets[x])
%Y A346344 Cf. A345626, A345851, A346334, A346343, A346345, A346354.
%K A346344 nonn
%O A346344 1,1
%A A346344 _David Consiglio, Jr._, Jul 13 2021