cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346345 Numbers that are the sum of nine fifth powers in exactly ten ways.

This page as a plain text file.
%I A346345 #6 Jul 31 2021 19:01:16
%S A346345 4157156,4492410,4510461,4915538,5005474,5015506,5179747,5219655,
%T A346345 5756794,6323426,6326519,6382443,6423394,6705284,6793170,6861218,
%U A346345 7101038,7147645,7147656,7148679,7266240,7280391,7283268,7314187,7413493,7422352,7531076,7651645,7693425
%N A346345 Numbers that are the sum of nine fifth powers in exactly ten ways.
%C A346345 Differs from A345627 at term 5 because 4948274 = 2^5 + 4^5 + 4^5 + 5^5 + 6^5 + 8^5 + 9^5 + 15^5 + 21^5 = 1^5 + 3^5 + 5^5 + 5^5 + 8^5 + 8^5 + 8^5 + 15^5 + 21^5 = 1^5 + 2^5 + 2^5 + 5^5 + 5^5 + 11^5 + 11^5 + 17^5 + 20^5 = 8^5 + 9^5 + 9^5 + 10^5 + 10^5 + 10^5 + 12^5 + 16^5 + 20^5 = 4^5 + 8^5 + 8^5 + 10^5 + 12^5 + 12^5 + 15^5 + 16^5 + 19^5 = 4^5 + 8^5 + 8^5 + 8^5 + 14^5 + 14^5 + 14^5 + 15^5 + 19^5 = 4^5 + 4^5 + 9^5 + 13^5 + 13^5 + 13^5 + 14^5 + 15^5 + 19^5 = 6^5 + 6^5 + 9^5 + 9^5 + 12^5 + 12^5 + 14^5 + 18^5 + 18^5 = 1^5 + 8^5 + 8^5 + 12^5 + 12^5 + 14^5 + 14^5 + 17^5 + 18^5 = 1^5 + 8^5 + 9^5 + 9^5 + 13^5 + 14^5 + 16^5 + 17^5 + 17^5 = 3^5 + 7^5 + 7^5 + 10^5 + 12^5 + 16^5 + 16^5 + 16^5 + 17^5.
%H A346345 Sean A. Irvine, <a href="/A346345/b346345.txt">Table of n, a(n) for n = 1..10000</a>
%e A346345 4157156 is a term because 4157156 = 1^5 + 2^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 9^5 + 21^5 = 1^5 + 1^5 + 3^5 + 4^5 + 5^5 + 5^5 + 8^5 + 8^5 + 21^5 = 1^5 + 4^5 + 4^5 + 8^5 + 10^5 + 12^5 + 12^5 + 16^5 + 19^5 = 1^5 + 4^5 + 4^5 + 8^5 + 8^5 + 14^5 + 14^5 + 14^5 + 19^5 = 5^5 + 5^5 + 5^5 + 5^5 + 7^5 + 9^5 + 15^5 + 17^5 + 18^5 = 3^5 + 3^5 + 5^5 + 6^5 + 9^5 + 10^5 + 16^5 + 16^5 + 18^5 = 1^5 + 1^5 + 5^5 + 5^5 + 13^5 + 13^5 + 15^5 + 15^5 + 18^5 = 2^5 + 3^5 + 4^5 + 4^5 + 10^5 + 14^5 + 16^5 + 16^5 + 17^5 = 11^5 + 11^5 + 12^5 + 12^5 + 12^5 + 12^5 + 13^5 + 16^5 + 17^5 = 2^5 + 2^5 + 2^5 + 5^5 + 12^5 + 15^5 + 16^5 + 16^5 + 16^5.
%o A346345 (Python)
%o A346345 from itertools import combinations_with_replacement as cwr
%o A346345 from collections import defaultdict
%o A346345 keep = defaultdict(lambda: 0)
%o A346345 power_terms = [x**5 for x in range(1, 1000)]
%o A346345 for pos in cwr(power_terms, 9):
%o A346345     tot = sum(pos)
%o A346345     keep[tot] += 1
%o A346345     rets = sorted([k for k, v in keep.items() if v == 10])
%o A346345     for x in range(len(rets)):
%o A346345         print(rets[x])
%Y A346345 Cf. A345627, A345852, A346335, A346344, A346355.
%K A346345 nonn
%O A346345 1,1
%A A346345 _David Consiglio, Jr._, Jul 13 2021