cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346346 Numbers that are the sum of ten fifth powers in exactly one way.

This page as a plain text file.
%I A346346 #6 Jul 31 2021 18:53:47
%S A346346 10,41,72,103,134,165,196,227,252,258,283,289,314,320,345,376,407,438,
%T A346346 469,494,500,525,531,556,587,618,649,680,711,736,742,767,798,829,860,
%U A346346 891,922,953,978,1009,1033,1040,1064,1071,1095,1102,1126,1133,1157,1164
%N A346346 Numbers that are the sum of ten fifth powers in exactly one way.
%C A346346 Differs from A003355 at term 229 because 4102 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
%H A346346 Sean A. Irvine, <a href="/A346346/b346346.txt">Table of n, a(n) for n = 1..10000</a>
%e A346346 10 is a term because 10 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
%o A346346 (Python)
%o A346346 from itertools import combinations_with_replacement as cwr
%o A346346 from collections import defaultdict
%o A346346 keep = defaultdict(lambda: 0)
%o A346346 power_terms = [x**5 for x in range(1, 1000)]
%o A346346 for pos in cwr(power_terms, 10):
%o A346346     tot = sum(pos)
%o A346346     keep[tot] += 1
%o A346346     rets = sorted([k for k, v in keep.items() if v == 1])
%o A346346     for x in range(len(rets)):
%o A346346         print(rets[x])
%Y A346346 Cf. A003355, A345853, A346336, A346347.
%K A346346 nonn
%O A346346 1,1
%A A346346 _David Consiglio, Jr._, Jul 13 2021