This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346346 #6 Jul 31 2021 18:53:47 %S A346346 10,41,72,103,134,165,196,227,252,258,283,289,314,320,345,376,407,438, %T A346346 469,494,500,525,531,556,587,618,649,680,711,736,742,767,798,829,860, %U A346346 891,922,953,978,1009,1033,1040,1064,1071,1095,1102,1126,1133,1157,1164 %N A346346 Numbers that are the sum of ten fifth powers in exactly one way. %C A346346 Differs from A003355 at term 229 because 4102 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5. %H A346346 Sean A. Irvine, <a href="/A346346/b346346.txt">Table of n, a(n) for n = 1..10000</a> %e A346346 10 is a term because 10 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5. %o A346346 (Python) %o A346346 from itertools import combinations_with_replacement as cwr %o A346346 from collections import defaultdict %o A346346 keep = defaultdict(lambda: 0) %o A346346 power_terms = [x**5 for x in range(1, 1000)] %o A346346 for pos in cwr(power_terms, 10): %o A346346 tot = sum(pos) %o A346346 keep[tot] += 1 %o A346346 rets = sorted([k for k, v in keep.items() if v == 1]) %o A346346 for x in range(len(rets)): %o A346346 print(rets[x]) %Y A346346 Cf. A003355, A345853, A346336, A346347. %K A346346 nonn %O A346346 1,1 %A A346346 _David Consiglio, Jr._, Jul 13 2021