cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346347 Numbers that are the sum of ten fifth powers in exactly two ways.

This page as a plain text file.
%I A346347 #6 Jul 31 2021 18:53:59
%S A346347 4102,4133,4164,4195,4226,4257,4344,4375,4406,4437,4468,4586,4617,
%T A346347 4648,4679,4828,4859,4890,5070,5101,5125,5156,5187,5218,5249,5312,
%U A346347 5367,5398,5429,5460,5609,5640,5671,5851,5882,6093,6148,6179,6210,6241,6390,6421,6452
%N A346347 Numbers that are the sum of ten fifth powers in exactly two ways.
%C A346347 Differs from A345634 at term 67 because 8194 = 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 5^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 4^5 + 4^5 + 4^5 + 5^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5.
%H A346347 Sean A. Irvine, <a href="/A346347/b346347.txt">Table of n, a(n) for n = 1..10000</a>
%e A346347 4102 is a term because 4102 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
%o A346347 (Python)
%o A346347 from itertools import combinations_with_replacement as cwr
%o A346347 from collections import defaultdict
%o A346347 keep = defaultdict(lambda: 0)
%o A346347 power_terms = [x**5 for x in range(1, 1000)]
%o A346347 for pos in cwr(power_terms, 10):
%o A346347     tot = sum(pos)
%o A346347     keep[tot] += 1
%o A346347     rets = sorted([k for k, v in keep.items() if v == 2])
%o A346347     for x in range(len(rets)):
%o A346347         print(rets[x])
%Y A346347 Cf. A345634, A345854, A346337, A346346, A346348.
%K A346347 nonn
%O A346347 1,1
%A A346347 _David Consiglio, Jr._, Jul 13 2021