This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346347 #6 Jul 31 2021 18:53:59 %S A346347 4102,4133,4164,4195,4226,4257,4344,4375,4406,4437,4468,4586,4617, %T A346347 4648,4679,4828,4859,4890,5070,5101,5125,5156,5187,5218,5249,5312, %U A346347 5367,5398,5429,5460,5609,5640,5671,5851,5882,6093,6148,6179,6210,6241,6390,6421,6452 %N A346347 Numbers that are the sum of ten fifth powers in exactly two ways. %C A346347 Differs from A345634 at term 67 because 8194 = 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 5^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 4^5 + 4^5 + 4^5 + 5^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5. %H A346347 Sean A. Irvine, <a href="/A346347/b346347.txt">Table of n, a(n) for n = 1..10000</a> %e A346347 4102 is a term because 4102 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5. %o A346347 (Python) %o A346347 from itertools import combinations_with_replacement as cwr %o A346347 from collections import defaultdict %o A346347 keep = defaultdict(lambda: 0) %o A346347 power_terms = [x**5 for x in range(1, 1000)] %o A346347 for pos in cwr(power_terms, 10): %o A346347 tot = sum(pos) %o A346347 keep[tot] += 1 %o A346347 rets = sorted([k for k, v in keep.items() if v == 2]) %o A346347 for x in range(len(rets)): %o A346347 print(rets[x]) %Y A346347 Cf. A345634, A345854, A346337, A346346, A346348. %K A346347 nonn %O A346347 1,1 %A A346347 _David Consiglio, Jr._, Jul 13 2021