cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346348 Numbers that are the sum of ten fifth powers in exactly three ways.

This page as a plain text file.
%I A346348 #6 Jul 31 2021 18:54:02
%S A346348 8194,21940,52419,52450,52481,52661,52692,52903,53442,53473,53684,
%T A346348 54465,54520,54551,54582,54762,54793,55004,55691,55722,55933,56714,
%U A346348 57644,57675,57886,58815,60194,60225,60436,60768,61217,62295,62326,62537,63466,65419,67969
%N A346348 Numbers that are the sum of ten fifth powers in exactly three ways.
%C A346348 Differs from A345635 at term 19 because 55543 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 5^5 + 7^5 + 7^5 + 7^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 7^5.
%H A346348 Sean A. Irvine, <a href="/A346348/b346348.txt">Table of n, a(n) for n = 1..10000</a>
%e A346348 8194 is a term because 8194 = 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 5^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 4^5 + 4^5 + 4^5 + 5^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5.
%o A346348 (Python)
%o A346348 from itertools import combinations_with_replacement as cwr
%o A346348 from collections import defaultdict
%o A346348 keep = defaultdict(lambda: 0)
%o A346348 power_terms = [x**5 for x in range(1, 1000)]
%o A346348 for pos in cwr(power_terms, 10):
%o A346348     tot = sum(pos)
%o A346348     keep[tot] += 1
%o A346348     rets = sorted([k for k, v in keep.items() if v == 3])
%o A346348     for x in range(len(rets)):
%o A346348         print(rets[x])
%Y A346348 Cf. A345635, A345855, A346338, A346347, A346349.
%K A346348 nonn
%O A346348 1,1
%A A346348 _David Consiglio, Jr._, Jul 13 2021