This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346348 #6 Jul 31 2021 18:54:02 %S A346348 8194,21940,52419,52450,52481,52661,52692,52903,53442,53473,53684, %T A346348 54465,54520,54551,54582,54762,54793,55004,55691,55722,55933,56714, %U A346348 57644,57675,57886,58815,60194,60225,60436,60768,61217,62295,62326,62537,63466,65419,67969 %N A346348 Numbers that are the sum of ten fifth powers in exactly three ways. %C A346348 Differs from A345635 at term 19 because 55543 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 5^5 + 7^5 + 7^5 + 7^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 7^5. %H A346348 Sean A. Irvine, <a href="/A346348/b346348.txt">Table of n, a(n) for n = 1..10000</a> %e A346348 8194 is a term because 8194 = 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 5^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 4^5 + 4^5 + 4^5 + 5^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5. %o A346348 (Python) %o A346348 from itertools import combinations_with_replacement as cwr %o A346348 from collections import defaultdict %o A346348 keep = defaultdict(lambda: 0) %o A346348 power_terms = [x**5 for x in range(1, 1000)] %o A346348 for pos in cwr(power_terms, 10): %o A346348 tot = sum(pos) %o A346348 keep[tot] += 1 %o A346348 rets = sorted([k for k, v in keep.items() if v == 3]) %o A346348 for x in range(len(rets)): %o A346348 print(rets[x]) %Y A346348 Cf. A345635, A345855, A346338, A346347, A346349. %K A346348 nonn %O A346348 1,1 %A A346348 _David Consiglio, Jr._, Jul 13 2021