This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346349 #6 Jul 31 2021 18:54:08 %S A346349 55543,55574,55785,56566,58667,63318,72349,73002,85186,86506,87287, %T A346349 87529,88310,103134,111498,113599,114591,118250,119031,120351,120382, %U A346349 120593,121374,123475,128126,134475,134878,135201,137157,142008,142219,143000,143211,143506 %N A346349 Numbers that are the sum of ten fifth powers in exactly four ways. %C A346349 Differs from A345636 at term 92 because 200009 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 6^5 + 6^5 + 6^5 + 9^5 + 10^5 = 1^5 + 3^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 8^5 + 8^5 + 10^5 = 1^5 + 3^5 + 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 8^5 + 10^5 = 2^5 + 2^5 + 4^5 + 4^5 + 6^5 + 8^5 + 8^5 + 8^5 + 8^5 + 9^5 = 1^5 + 2^5 + 3^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5. %H A346349 Sean A. Irvine, <a href="/A346349/b346349.txt">Table of n, a(n) for n = 1..10000</a> %e A346349 55543 is a term because 55543 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 5^5 + 7^5 + 7^5 + 7^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 7^5. %o A346349 (Python) %o A346349 from itertools import combinations_with_replacement as cwr %o A346349 from collections import defaultdict %o A346349 keep = defaultdict(lambda: 0) %o A346349 power_terms = [x**5 for x in range(1, 1000)] %o A346349 for pos in cwr(power_terms, 10): %o A346349 tot = sum(pos) %o A346349 keep[tot] += 1 %o A346349 rets = sorted([k for k, v in keep.items() if v == 4]) %o A346349 for x in range(len(rets)): %o A346349 print(rets[x]) %Y A346349 Cf. A345636, A345856, A346339, A346348, A346350. %K A346349 nonn %O A346349 1,1 %A A346349 _David Consiglio, Jr._, Jul 13 2021