cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346351 Numbers that are the sum of ten fifth powers in exactly six ways.

This page as a plain text file.
%I A346351 #6 Jul 31 2021 18:54:16
%S A346351 392095,392306,399839,406802,407583,434676,491643,492063,520261,
%T A346351 521106,538323,538534,540927,553325,563526,582089,592398,608190,
%U A346351 611072,614196,637833,639903,640715,640895,640926,640957,641106,643671,653523,655327,656616,664895
%N A346351 Numbers that are the sum of ten fifth powers in exactly six ways.
%C A346351 Differs from A345638 at term 15 because 555098 = 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 7^5 + 14^5 = 1^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 7^5 + 8^5 + 10^5 + 13^5 = 1^5 + 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 7^5 + 10^5 + 13^5 = 1^5 + 2^5 + 5^5 + 7^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 + 13^5 = 4^5 + 4^5 + 4^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 11^5 + 12^5 = 3^5 + 3^5 + 4^5 + 4^5 + 6^5 + 7^5 + 9^5 + 9^5 + 11^5 + 12^5 = 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 + 11^5.
%H A346351 Sean A. Irvine, <a href="/A346351/b346351.txt">Table of n, a(n) for n = 1..10000</a>
%e A346351 392095 is a term because 392095 = 2^5 + 2^5 + 2^5 + 4^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5 = 1^5 + 1^5 + 1^5 + 5^5 + 6^5 + 6^5 + 6^5 + 7^5 + 10^5 + 12^5 = 2^5 + 2^5 + 2^5 + 3^5 + 3^5 + 6^5 + 7^5 + 9^5 + 9^5 + 12^5 = 2^5 + 2^5 + 2^5 + 4^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 1^5 + 2^5 + 2^5 + 3^5 + 4^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5 = 1^5 + 1^5 + 1^5 + 2^5 + 3^5 + 8^5 + 9^5 + 10^5 + 10^5 + 10^5.
%o A346351 (Python)
%o A346351 from itertools import combinations_with_replacement as cwr
%o A346351 from collections import defaultdict
%o A346351 keep = defaultdict(lambda: 0)
%o A346351 power_terms = [x**5 for x in range(1, 1000)]
%o A346351 for pos in cwr(power_terms, 10):
%o A346351     tot = sum(pos)
%o A346351     keep[tot] += 1
%o A346351     rets = sorted([k for k, v in keep.items() if v == 6])
%o A346351     for x in range(len(rets)):
%o A346351         print(rets[x])
%Y A346351 Cf. A345638, A345858, A346341, A346350, A346352.
%K A346351 nonn
%O A346351 1,1
%A A346351 _David Consiglio, Jr._, Jul 13 2021