cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346352 Numbers that are the sum of ten fifth powers in exactly seven ways.

This page as a plain text file.
%I A346352 #6 Jul 31 2021 18:54:19
%S A346352 555098,674040,683166,707315,763631,777852,778844,780945,783224,
%T A346352 893654,896500,897668,920887,926616,927819,928802,936850,937631,
%U A346352 945017,952897,953077,953350,955178,963131,975133,979482,984133,985664,987257,991908,993575,993606
%N A346352 Numbers that are the sum of ten fifth powers in exactly seven ways.
%C A346352 Differs from A345639 at term 19 because 944383 = 4^5 + 4^5 + 4^5 + 6^5 + 7^5 + 8^5 + 8^5 + 8^5 + 9^5 + 15^5 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 + 10^5 + 12^5 + 14^5 = 2^5 + 4^5 + 5^5 + 5^5 + 7^5 + 7^5 + 7^5 + 10^5 + 12^5 + 14^5 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 6^5 + 9^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 + 8^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 4^5 + 6^5 + 7^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 10^5 + 11^5 + 11^5 + 12^5 + 12^5.
%H A346352 Sean A. Irvine, <a href="/A346352/b346352.txt">Table of n, a(n) for n = 1..10000</a>
%e A346352 555098 is a term because 555098 = 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 7^5 + 14^5 = 1^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 7^5 + 8^5 + 10^5 + 13^5 = 1^5 + 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 7^5 + 10^5 + 13^5 = 1^5 + 2^5 + 5^5 + 7^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 + 13^5 = 4^5 + 4^5 + 4^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 11^5 + 12^5 = 3^5 + 3^5 + 4^5 + 4^5 + 6^5 + 7^5 + 9^5 + 9^5 + 11^5 + 12^5 = 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 + 11^5.
%o A346352 (Python)
%o A346352 from itertools import combinations_with_replacement as cwr
%o A346352 from collections import defaultdict
%o A346352 keep = defaultdict(lambda: 0)
%o A346352 power_terms = [x**5 for x in range(1, 1000)]
%o A346352 for pos in cwr(power_terms, 10):
%o A346352     tot = sum(pos)
%o A346352     keep[tot] += 1
%o A346352     rets = sorted([k for k, v in keep.items() if v == 7])
%o A346352     for x in range(len(rets)):
%o A346352         print(rets[x])
%Y A346352 Cf. A345639, A345859, A346342, A346351, A346353.
%K A346352 nonn
%O A346352 1,1
%A A346352 _David Consiglio, Jr._, Jul 13 2021