This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346352 #6 Jul 31 2021 18:54:19 %S A346352 555098,674040,683166,707315,763631,777852,778844,780945,783224, %T A346352 893654,896500,897668,920887,926616,927819,928802,936850,937631, %U A346352 945017,952897,953077,953350,955178,963131,975133,979482,984133,985664,987257,991908,993575,993606 %N A346352 Numbers that are the sum of ten fifth powers in exactly seven ways. %C A346352 Differs from A345639 at term 19 because 944383 = 4^5 + 4^5 + 4^5 + 6^5 + 7^5 + 8^5 + 8^5 + 8^5 + 9^5 + 15^5 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 + 10^5 + 12^5 + 14^5 = 2^5 + 4^5 + 5^5 + 5^5 + 7^5 + 7^5 + 7^5 + 10^5 + 12^5 + 14^5 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 6^5 + 9^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 + 8^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 4^5 + 6^5 + 7^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 10^5 + 11^5 + 11^5 + 12^5 + 12^5. %H A346352 Sean A. Irvine, <a href="/A346352/b346352.txt">Table of n, a(n) for n = 1..10000</a> %e A346352 555098 is a term because 555098 = 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 7^5 + 14^5 = 1^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 7^5 + 8^5 + 10^5 + 13^5 = 1^5 + 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 7^5 + 10^5 + 13^5 = 1^5 + 2^5 + 5^5 + 7^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 + 13^5 = 4^5 + 4^5 + 4^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 11^5 + 12^5 = 3^5 + 3^5 + 4^5 + 4^5 + 6^5 + 7^5 + 9^5 + 9^5 + 11^5 + 12^5 = 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 + 11^5. %o A346352 (Python) %o A346352 from itertools import combinations_with_replacement as cwr %o A346352 from collections import defaultdict %o A346352 keep = defaultdict(lambda: 0) %o A346352 power_terms = [x**5 for x in range(1, 1000)] %o A346352 for pos in cwr(power_terms, 10): %o A346352 tot = sum(pos) %o A346352 keep[tot] += 1 %o A346352 rets = sorted([k for k, v in keep.items() if v == 7]) %o A346352 for x in range(len(rets)): %o A346352 print(rets[x]) %Y A346352 Cf. A345639, A345859, A346342, A346351, A346353. %K A346352 nonn %O A346352 1,1 %A A346352 _David Consiglio, Jr._, Jul 13 2021