This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346353 #6 Jul 31 2021 18:54:23 %S A346353 944383,953139,953414,985453,1118585,1151438,1185375,1198879,1206546, %T A346353 1209912,1216569,1217172,1218912,1223321,1225398,1234631,1241834, %U A346353 1251195,1251406,1252123,1259685,1265563,1265594,1267937,1275375,1281736,1295418,1297697,1298088 %N A346353 Numbers that are the sum of ten fifth powers in exactly eight ways. %C A346353 Differs from A345640 at term 8 because 1192180 = 5^5 + 5^5 + 5^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 10^5 + 16^5 = 2^5 + 5^5 + 5^5 + 5^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 16^5 = 3^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 6^5 + 8^5 + 13^5 + 15^5 = 3^5 + 4^5 + 4^5 + 4^5 + 6^5 + 7^5 + 7^5 + 7^5 + 13^5 + 15^5 = 2^5 + 2^5 + 2^5 + 3^5 + 8^5 + 8^5 + 9^5 + 9^5 + 12^5 + 15^5 = 1^5 + 1^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 12^5 + 13^5 + 14^5 = 1^5 + 2^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 12^5 + 13^5 + 13^5 = 1^5 + 2^5 + 2^5 + 2^5 + 4^5 + 11^5 + 11^5 + 12^5 + 12^5 + 13^5 = 6^5 + 9^5 + 9^5 + 10^5 + 11^5 + 11^5 + 11^5 + 11^5 + 11^5 + 11^5. %H A346353 Sean A. Irvine, <a href="/A346353/b346353.txt">Table of n, a(n) for n = 1..10000</a> %e A346353 944383 is a term because 944383 = 4^5 + 4^5 + 4^5 + 6^5 + 7^5 + 8^5 + 8^5 + 8^5 + 9^5 + 15^5 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 + 10^5 + 12^5 + 14^5 = 2^5 + 4^5 + 5^5 + 5^5 + 7^5 + 7^5 + 7^5 + 10^5 + 12^5 + 14^5 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 6^5 + 9^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 + 8^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 4^5 + 6^5 + 7^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 10^5 + 11^5 + 11^5 + 12^5 + 12^5. %o A346353 (Python) %o A346353 from itertools import combinations_with_replacement as cwr %o A346353 from collections import defaultdict %o A346353 keep = defaultdict(lambda: 0) %o A346353 power_terms = [x**5 for x in range(1, 1000)] %o A346353 for pos in cwr(power_terms, 10): %o A346353 tot = sum(pos) %o A346353 keep[tot] += 1 %o A346353 rets = sorted([k for k, v in keep.items() if v == 8]) %o A346353 for x in range(len(rets)): %o A346353 print(rets[x]) %Y A346353 Cf. A345640, A345860, A346343, A346352, A346354. %K A346353 nonn %O A346353 1,1 %A A346353 _David Consiglio, Jr._, Jul 13 2021