cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346353 Numbers that are the sum of ten fifth powers in exactly eight ways.

This page as a plain text file.
%I A346353 #6 Jul 31 2021 18:54:23
%S A346353 944383,953139,953414,985453,1118585,1151438,1185375,1198879,1206546,
%T A346353 1209912,1216569,1217172,1218912,1223321,1225398,1234631,1241834,
%U A346353 1251195,1251406,1252123,1259685,1265563,1265594,1267937,1275375,1281736,1295418,1297697,1298088
%N A346353 Numbers that are the sum of ten fifth powers in exactly eight ways.
%C A346353 Differs from A345640 at term 8 because 1192180 = 5^5 + 5^5 + 5^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 10^5 + 16^5 = 2^5 + 5^5 + 5^5 + 5^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 16^5 = 3^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 6^5 + 8^5 + 13^5 + 15^5 = 3^5 + 4^5 + 4^5 + 4^5 + 6^5 + 7^5 + 7^5 + 7^5 + 13^5 + 15^5 = 2^5 + 2^5 + 2^5 + 3^5 + 8^5 + 8^5 + 9^5 + 9^5 + 12^5 + 15^5 = 1^5 + 1^5 + 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 12^5 + 13^5 + 14^5 = 1^5 + 2^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 12^5 + 13^5 + 13^5 = 1^5 + 2^5 + 2^5 + 2^5 + 4^5 + 11^5 + 11^5 + 12^5 + 12^5 + 13^5 = 6^5 + 9^5 + 9^5 + 10^5 + 11^5 + 11^5 + 11^5 + 11^5 + 11^5 + 11^5.
%H A346353 Sean A. Irvine, <a href="/A346353/b346353.txt">Table of n, a(n) for n = 1..10000</a>
%e A346353 944383 is a term because 944383 = 4^5 + 4^5 + 4^5 + 6^5 + 7^5 + 8^5 + 8^5 + 8^5 + 9^5 + 15^5 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 + 10^5 + 12^5 + 14^5 = 2^5 + 4^5 + 5^5 + 5^5 + 7^5 + 7^5 + 7^5 + 10^5 + 12^5 + 14^5 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 6^5 + 9^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 + 8^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 8^5 + 11^5 + 11^5 + 14^5 = 1^5 + 3^5 + 4^5 + 6^5 + 7^5 + 7^5 + 8^5 + 12^5 + 12^5 + 13^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 10^5 + 11^5 + 11^5 + 12^5 + 12^5.
%o A346353 (Python)
%o A346353 from itertools import combinations_with_replacement as cwr
%o A346353 from collections import defaultdict
%o A346353 keep = defaultdict(lambda: 0)
%o A346353 power_terms = [x**5 for x in range(1, 1000)]
%o A346353 for pos in cwr(power_terms, 10):
%o A346353     tot = sum(pos)
%o A346353     keep[tot] += 1
%o A346353     rets = sorted([k for k, v in keep.items() if v == 8])
%o A346353     for x in range(len(rets)):
%o A346353         print(rets[x])
%Y A346353 Cf. A345640, A345860, A346343, A346352, A346354.
%K A346353 nonn
%O A346353 1,1
%A A346353 _David Consiglio, Jr._, Jul 13 2021