This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346355 #6 Jul 31 2021 18:54:31 %S A346355 1431641,1439416,1464377,1464408,1505660,1531640,1564165,1782171, %T A346355 1969253,1976997,1986028,2000966,2028270,2042460,2052415,2058421, %U A346355 2059202,2060522,2076393,2130272,2201247,2208681,2209704,2248941,2250329,2251042,2282073,2307747,2315379 %N A346355 Numbers that are the sum of ten fifth powers in exactly ten ways. %C A346355 Differs from A345642 at term 6 because 1531398 = 2^5 + 5^5 + 5^5 + 5^5 + 6^5 + 7^5 + 10^5 + 10^5 + 12^5 + 16^5 = 1^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 10^5 + 11^5 + 11^5 + 16^5 = 1^5 + 1^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 10^5 + 14^5 + 15^5 = 2^5 + 3^5 + 4^5 + 4^5 + 7^5 + 8^5 + 10^5 + 12^5 + 13^5 + 15^5 = 1^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 1^5 + 2^5 + 2^5 + 4^5 + 10^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 6^5 + 9^5 + 13^5 + 14^5 + 14^5 = 1^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 + 8^5 + 13^5 + 14^5 + 14^5 = 1^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 8^5 + 13^5 + 14^5 + 14^5 = 1^5 + 1^5 + 2^5 + 7^5 + 7^5 + 10^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 1^5 + 2^5 + 6^5 + 7^5 + 10^5 + 12^5 + 12^5 + 13^5 + 14^5. %H A346355 Sean A. Irvine, <a href="/A346355/b346355.txt">Table of n, a(n) for n = 1..10000</a> %e A346355 1431641 is a term because 1431641 = 2^5 + 3^5 + 5^5 + 5^5 + 5^5 + 6^5 + 7^5 + 10^5 + 12^5 + 16^5 = 1^5 + 1^5 + 4^5 + 6^5 + 7^5 + 7^5 + 8^5 + 9^5 + 12^5 + 16^5 = 1^5 + 3^5 + 3^5 + 5^5 + 6^5 + 7^5 + 8^5 + 11^5 + 11^5 + 16^5 = 1^5 + 2^5 + 4^5 + 4^5 + 6^5 + 8^5 + 8^5 + 9^5 + 14^5 + 15^5 = 1^5 + 1^5 + 3^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 14^5 + 15^5 = 2^5 + 3^5 + 3^5 + 4^5 + 4^5 + 7^5 + 8^5 + 12^5 + 13^5 + 15^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 10^5 + 10^5 + 10^5 + 13^5 + 15^5 = 1^5 + 2^5 + 2^5 + 3^5 + 4^5 + 10^5 + 11^5 + 11^5 + 12^5 + 15^5 = 1^5 + 1^5 + 2^5 + 3^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 + 14^5 = 1^5 + 1^5 + 2^5 + 3^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 + 14^5. %o A346355 (Python) %o A346355 from itertools import combinations_with_replacement as cwr %o A346355 from collections import defaultdict %o A346355 keep = defaultdict(lambda: 0) %o A346355 power_terms = [x**5 for x in range(1, 1000)] %o A346355 for pos in cwr(power_terms, 10): %o A346355 tot = sum(pos) %o A346355 keep[tot] += 1 %o A346355 rets = sorted([k for k, v in keep.items() if v == 10]) %o A346355 for x in range(len(rets)): %o A346355 print(rets[x]) %Y A346355 Cf. A345642, A345862, A346345, A346354. %K A346355 nonn %O A346355 1,1 %A A346355 _David Consiglio, Jr._, Jul 13 2021