cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346356 Numbers that are the sum of six fifth powers in exactly one way.

This page as a plain text file.
%I A346356 #7 Jul 31 2021 19:24:01
%S A346356 6,37,68,99,130,161,192,248,279,310,341,372,403,490,521,552,583,614,
%T A346356 732,763,794,825,974,1005,1029,1036,1060,1091,1122,1153,1184,1216,
%U A346356 1247,1271,1302,1333,1364,1395,1458,1513,1544,1575,1606,1755,1786,1817,1997,2028
%N A346356 Numbers that are the sum of six fifth powers in exactly one way.
%C A346356 Differs from A003351 at term 93 because 4098 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
%H A346356 Sean A. Irvine, <a href="/A346356/b346356.txt">Table of n, a(n) for n = 1..10000</a>
%e A346356 6 is a term because 6 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
%o A346356 (Python)
%o A346356 from itertools import combinations_with_replacement as cwr
%o A346356 from collections import defaultdict
%o A346356 keep = defaultdict(lambda: 0)
%o A346356 power_terms = [x**5 for x in range(1, 1000)]
%o A346356 for pos in cwr(power_terms, 6):
%o A346356     tot = sum(pos)
%o A346356     keep[tot] += 1
%o A346356     rets = sorted([k for k, v in keep.items() if v == 1])
%o A346356     for x in range(len(rets)):
%o A346356         print(rets[x])
%Y A346356 Cf. A003351, A344643, A345813, A346278, A346357.
%K A346356 nonn
%O A346356 1,1
%A A346356 _David Consiglio, Jr._, Jul 13 2021