This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346356 #7 Jul 31 2021 19:24:01 %S A346356 6,37,68,99,130,161,192,248,279,310,341,372,403,490,521,552,583,614, %T A346356 732,763,794,825,974,1005,1029,1036,1060,1091,1122,1153,1184,1216, %U A346356 1247,1271,1302,1333,1364,1395,1458,1513,1544,1575,1606,1755,1786,1817,1997,2028 %N A346356 Numbers that are the sum of six fifth powers in exactly one way. %C A346356 Differs from A003351 at term 93 because 4098 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5. %H A346356 Sean A. Irvine, <a href="/A346356/b346356.txt">Table of n, a(n) for n = 1..10000</a> %e A346356 6 is a term because 6 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5. %o A346356 (Python) %o A346356 from itertools import combinations_with_replacement as cwr %o A346356 from collections import defaultdict %o A346356 keep = defaultdict(lambda: 0) %o A346356 power_terms = [x**5 for x in range(1, 1000)] %o A346356 for pos in cwr(power_terms, 6): %o A346356 tot = sum(pos) %o A346356 keep[tot] += 1 %o A346356 rets = sorted([k for k, v in keep.items() if v == 1]) %o A346356 for x in range(len(rets)): %o A346356 print(rets[x]) %Y A346356 Cf. A003351, A344643, A345813, A346278, A346357. %K A346356 nonn %O A346356 1,1 %A A346356 _David Consiglio, Jr._, Jul 13 2021