cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346357 Numbers that are the sum of six fifth powers in exactly two ways.

This page as a plain text file.
%I A346357 #6 Jul 31 2021 19:24:09
%S A346357 4098,4129,4340,5121,7222,11873,20904,36865,51447,51478,51509,51689,
%T A346357 51720,51931,52470,52501,52712,53493,54571,54602,54813,55594,57695,
%U A346357 59222,59253,59464,60245,62346,63146,66997,67586,68253,68284,68495,68906,68937,69148,69276
%N A346357 Numbers that are the sum of six fifth powers in exactly two ways.
%C A346357 Differs from A345507 at term 231 because 696467 = 1^5 + 6^5 + 8^5 + 9^5 + 9^5 + 14^5 = 3^5 + 3^5 + 7^5 + 9^5 + 12^5 + 13^5 = 4^5 + 4^5 + 4^5 + 11^5 + 11^5 + 13^5.
%H A346357 Sean A. Irvine, <a href="/A346357/b346357.txt">Table of n, a(n) for n = 1..10000</a>
%e A346357 4098 is a term because 4098 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
%o A346357 (Python)
%o A346357 from itertools import combinations_with_replacement as cwr
%o A346357 from collections import defaultdict
%o A346357 keep = defaultdict(lambda: 0)
%o A346357 power_terms = [x**5 for x in range(1, 1000)]
%o A346357 for pos in cwr(power_terms, 6):
%o A346357     tot = sum(pos)
%o A346357     keep[tot] += 1
%o A346357     rets = sorted([k for k, v in keep.items() if v == 2])
%o A346357     for x in range(len(rets)):
%o A346357         print(rets[x])
%Y A346357 Cf. A342686, A345507, A345814, A346279, A346356, A346358.
%K A346357 nonn
%O A346357 1,1
%A A346357 _David Consiglio, Jr._, Jul 13 2021