This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346357 #6 Jul 31 2021 19:24:09 %S A346357 4098,4129,4340,5121,7222,11873,20904,36865,51447,51478,51509,51689, %T A346357 51720,51931,52470,52501,52712,53493,54571,54602,54813,55594,57695, %U A346357 59222,59253,59464,60245,62346,63146,66997,67586,68253,68284,68495,68906,68937,69148,69276 %N A346357 Numbers that are the sum of six fifth powers in exactly two ways. %C A346357 Differs from A345507 at term 231 because 696467 = 1^5 + 6^5 + 8^5 + 9^5 + 9^5 + 14^5 = 3^5 + 3^5 + 7^5 + 9^5 + 12^5 + 13^5 = 4^5 + 4^5 + 4^5 + 11^5 + 11^5 + 13^5. %H A346357 Sean A. Irvine, <a href="/A346357/b346357.txt">Table of n, a(n) for n = 1..10000</a> %e A346357 4098 is a term because 4098 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5. %o A346357 (Python) %o A346357 from itertools import combinations_with_replacement as cwr %o A346357 from collections import defaultdict %o A346357 keep = defaultdict(lambda: 0) %o A346357 power_terms = [x**5 for x in range(1, 1000)] %o A346357 for pos in cwr(power_terms, 6): %o A346357 tot = sum(pos) %o A346357 keep[tot] += 1 %o A346357 rets = sorted([k for k, v in keep.items() if v == 2]) %o A346357 for x in range(len(rets)): %o A346357 print(rets[x]) %Y A346357 Cf. A342686, A345507, A345814, A346279, A346356, A346358. %K A346357 nonn %O A346357 1,1 %A A346357 _David Consiglio, Jr._, Jul 13 2021