cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346359 Numbers that are the sum of six fifth powers in exactly four ways.

This page as a plain text file.
%I A346359 #6 Jul 31 2021 19:24:17
%S A346359 12047994,20646208,21017489,21300963,21741819,24993485,27669050,
%T A346359 28576064,30193856,30785920,35480456,35735194,36082750,37303264,
%U A346359 39035975,46814942,47963291,50047062,50724345,52987561,53076800,53606848,55101101,56766906,57969327,58125980
%N A346359 Numbers that are the sum of six fifth powers in exactly four ways.
%C A346359 Differs from A345718 at term 23 because 54827300 = 4^5 + 7^5 + 21^5 + 22^5 + 23^5 + 33^5 = 5^5 + 10^5 + 15^5 + 20^5 + 28^5 + 32^5 = 1^5 + 14^5 + 16^5 + 19^5 + 28^5 + 32^5 = 4^5 + 11^5 + 13^5 + 22^5 + 29^5 + 31^5 = 5^5 + 6^5 + 19^5 + 20^5 + 29^5 + 31^5.
%H A346359 Sean A. Irvine, <a href="/A346359/b346359.txt">Table of n, a(n) for n = 1..10000</a>
%e A346359 12047994 is a term because 12047994 = 7^5 + 9^5 + 12^5 + 14^5 + 17^5 + 25^5 = 5^5 + 10^5 + 13^5 + 15^5 + 16^5 + 25^5 = 1^5 + 1^5 + 3^5 + 4^5 + 21^5 + 24^5 = 4^5 + 6^5 + 15^5 + 15^5 + 21^5 + 23^5.
%o A346359 (Python)
%o A346359 from itertools import combinations_with_replacement as cwr
%o A346359 from collections import defaultdict
%o A346359 keep = defaultdict(lambda: 0)
%o A346359 power_terms = [x**5 for x in range(1, 1000)]
%o A346359 for pos in cwr(power_terms, 6):
%o A346359     tot = sum(pos)
%o A346359     keep[tot] += 1
%o A346359     rets = sorted([k for k, v in keep.items() if v == 4])
%o A346359     for x in range(len(rets)):
%o A346359         print(rets[x])
%Y A346359 Cf. A344519, A345718, A345816, A346281, A346358, A346360.
%K A346359 nonn
%O A346359 1,1
%A A346359 _David Consiglio, Jr._, Jul 13 2021