cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346363 Numbers that are the sum of six fifth powers in exactly eight ways.

This page as a plain text file.
%I A346363 #14 May 11 2024 20:43:32
%S A346363 2295937600,4335900525,6251954544,8986552608,13413708308,14539246326,
%T A346363 15277569450,15728636000,16770321920,16873011232,17572402769,
%U A346363 17713454592,17960776999,18190647200,19621666592,20570070125,20827689300,22322555200,23461554774,23613244800
%N A346363 Numbers that are the sum of six fifth powers in exactly eight ways.
%C A346363 This sequence differs from A345722:
%C A346363 9085584992 = 24^5 + 38^5 + 42^5 + 48^5 + 54^5 + 96^5
%C A346363            = 21^5 + 34^5 + 38^5 + 43^5 + 74^5 + 92^5
%C A346363            =  8^5 + 34^5 + 38^5 + 62^5 + 68^5 + 92^5
%C A346363            = 18^5 + 18^5 + 44^5 + 64^5 + 66^5 + 92^5
%C A346363            = 13^5 + 18^5 + 51^5 + 64^5 + 64^5 + 92^5
%C A346363            =  8^5 + 38^5 + 41^5 + 47^5 + 79^5 + 89^5
%C A346363            =  5^5 + 23^5 + 29^5 + 45^5 + 85^5 + 85^5
%C A346363            =  8^5 + 23^5 + 41^5 + 64^5 + 82^5 + 84^5
%C A346363            = 12^5 + 18^5 + 38^5 + 72^5 + 78^5 + 84^5,
%C A346363 so 9085584992 is in A345722, but is not in this sequence.
%H A346363 Sean A. Irvine, <a href="/A346363/b346363.txt">Table of n, a(n) for n = 1..4934</a>
%e A346363 2295937600 =  4^5 + 21^5 + 38^5 + 42^5 + 43^5 + 72^5
%e A346363            =  8^5 + 16^5 + 30^5 + 42^5 + 54^5 + 70^5
%e A346363            =  8^5 + 13^5 + 36^5 + 37^5 + 57^5 + 69^5
%e A346363            = 14^5 + 16^5 + 16^5 + 52^5 + 54^5 + 68^5
%e A346363            =  3^5 + 14^5 + 32^5 + 44^5 + 61^5 + 66^5
%e A346363            =  4^5 + 18^5 + 22^5 + 52^5 + 58^5 + 66^5
%e A346363            = 10^5 + 14^5 + 26^5 + 42^5 + 63^5 + 65^5
%e A346363            =  1^5 +  7^5 + 34^5 + 57^5 + 58^5 + 63^5,
%e A346363 so 2295937600 is a term.
%o A346363 (Python)
%o A346363 from itertools import combinations_with_replacement as cwr
%o A346363 from collections import defaultdict
%o A346363 keep = defaultdict(lambda: 0)
%o A346363 power_terms = [x**5 for x in range(1, 1000)]
%o A346363 for pos in cwr(power_terms, 6):
%o A346363     tot = sum(pos)
%o A346363     keep[tot] += 1
%o A346363     rets = sorted([k for k, v in keep.items() if v == 8])
%o A346363     for x in range(len(rets)):
%o A346363         print(rets[x])
%Y A346363 Cf. A345722, A345820, A346285, A346362, A346364.
%K A346363 nonn
%O A346363 1,1
%A A346363 _David Consiglio, Jr._, Jul 13 2021