This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346363 #14 May 11 2024 20:43:32 %S A346363 2295937600,4335900525,6251954544,8986552608,13413708308,14539246326, %T A346363 15277569450,15728636000,16770321920,16873011232,17572402769, %U A346363 17713454592,17960776999,18190647200,19621666592,20570070125,20827689300,22322555200,23461554774,23613244800 %N A346363 Numbers that are the sum of six fifth powers in exactly eight ways. %C A346363 This sequence differs from A345722: %C A346363 9085584992 = 24^5 + 38^5 + 42^5 + 48^5 + 54^5 + 96^5 %C A346363 = 21^5 + 34^5 + 38^5 + 43^5 + 74^5 + 92^5 %C A346363 = 8^5 + 34^5 + 38^5 + 62^5 + 68^5 + 92^5 %C A346363 = 18^5 + 18^5 + 44^5 + 64^5 + 66^5 + 92^5 %C A346363 = 13^5 + 18^5 + 51^5 + 64^5 + 64^5 + 92^5 %C A346363 = 8^5 + 38^5 + 41^5 + 47^5 + 79^5 + 89^5 %C A346363 = 5^5 + 23^5 + 29^5 + 45^5 + 85^5 + 85^5 %C A346363 = 8^5 + 23^5 + 41^5 + 64^5 + 82^5 + 84^5 %C A346363 = 12^5 + 18^5 + 38^5 + 72^5 + 78^5 + 84^5, %C A346363 so 9085584992 is in A345722, but is not in this sequence. %H A346363 Sean A. Irvine, <a href="/A346363/b346363.txt">Table of n, a(n) for n = 1..4934</a> %e A346363 2295937600 = 4^5 + 21^5 + 38^5 + 42^5 + 43^5 + 72^5 %e A346363 = 8^5 + 16^5 + 30^5 + 42^5 + 54^5 + 70^5 %e A346363 = 8^5 + 13^5 + 36^5 + 37^5 + 57^5 + 69^5 %e A346363 = 14^5 + 16^5 + 16^5 + 52^5 + 54^5 + 68^5 %e A346363 = 3^5 + 14^5 + 32^5 + 44^5 + 61^5 + 66^5 %e A346363 = 4^5 + 18^5 + 22^5 + 52^5 + 58^5 + 66^5 %e A346363 = 10^5 + 14^5 + 26^5 + 42^5 + 63^5 + 65^5 %e A346363 = 1^5 + 7^5 + 34^5 + 57^5 + 58^5 + 63^5, %e A346363 so 2295937600 is a term. %o A346363 (Python) %o A346363 from itertools import combinations_with_replacement as cwr %o A346363 from collections import defaultdict %o A346363 keep = defaultdict(lambda: 0) %o A346363 power_terms = [x**5 for x in range(1, 1000)] %o A346363 for pos in cwr(power_terms, 6): %o A346363 tot = sum(pos) %o A346363 keep[tot] += 1 %o A346363 rets = sorted([k for k, v in keep.items() if v == 8]) %o A346363 for x in range(len(rets)): %o A346363 print(rets[x]) %Y A346363 Cf. A345722, A345820, A346285, A346362, A346364. %K A346363 nonn %O A346363 1,1 %A A346363 _David Consiglio, Jr._, Jul 13 2021