This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346364 #11 May 11 2024 20:43:37 %S A346364 9085584992,16933805856,37377003050,39254220544,41066625600, %T A346364 41485873792,42149876800,43828403850,44180505600,45902654525, %U A346364 48588434400,52005184992,53536896864,54156285568,56229189632,57088402525,59954496800,63432407850,66188522400,66507304800 %N A346364 Numbers that are the sum of six fifth powers in exactly nine ways. %C A346364 This sequence differs from A345723: %C A346364 55302546200 = 34^5 + 38^5 + 50^5 + 57^5 + 95^5 + 136^5 %C A346364 = 23^5 + 49^5 + 61^5 + 69^5 + 107^5 + 131^5 %C A346364 = 24^5 + 37^5 + 63^5 + 81^5 + 104^5 + 131^5 %C A346364 = 21^5 + 35^5 + 60^5 + 94^5 + 100^5 + 130^5 %C A346364 = 57^5 + 60^5 + 71^5 + 75^5 + 109^5 + 128^5 %C A346364 = 19^5 + 37^5 + 56^5 + 96^5 + 104^5 + 128^5 %C A346364 = 35^5 + 41^5 + 53^5 + 69^5 + 115^5 + 127^5 %C A346364 = 16^5 + 49^5 + 53^5 + 83^5 + 112^5 + 127^5 %C A346364 = 35^5 + 37^5 + 40^5 + 88^5 + 119^5 + 121^5 %C A346364 = 11^5 + 24^5 + 71^5 + 104^5 + 109^5 + 121^5, %C A346364 so 55302546200 is in A345723, but is not in this sequence. %H A346364 Sean A. Irvine, <a href="/A346364/b346364.txt">Table of n, a(n) for n = 1..549</a> %e A346364 9085584992 = 24^5 + 38^5 + 42^5 + 48^5 + 54^5 + 96^5 %e A346364 = 21^5 + 34^5 + 38^5 + 43^5 + 74^5 + 92^5 %e A346364 = 8^5 + 34^5 + 38^5 + 62^5 + 68^5 + 92^5 %e A346364 = 18^5 + 18^5 + 44^5 + 64^5 + 66^5 + 92^5 %e A346364 = 13^5 + 18^5 + 51^5 + 64^5 + 64^5 + 92^5 %e A346364 = 8^5 + 38^5 + 41^5 + 47^5 + 79^5 + 89^5 %e A346364 = 5^5 + 23^5 + 29^5 + 45^5 + 85^5 + 85^5 %e A346364 = 8^5 + 23^5 + 41^5 + 64^5 + 82^5 + 84^5 %e A346364 = 12^5 + 18^5 + 38^5 + 72^5 + 78^5 + 84^5, %e A346364 so 9085584992 is a term. %o A346364 (Python) %o A346364 from itertools import combinations_with_replacement as cwr %o A346364 from collections import defaultdict %o A346364 keep = defaultdict(lambda: 0) %o A346364 power_terms = [x**5 for x in range(1, 1000)] %o A346364 for pos in cwr(power_terms, 6): %o A346364 tot = sum(pos) %o A346364 keep[tot] += 1 %o A346364 rets = sorted([k for k, v in keep.items() if v == 9]) %o A346364 for x in range(len(rets)): %o A346364 print(rets[x]) %Y A346364 Cf. A345723, A345821, A346286, A346363, A346365. %K A346364 nonn %O A346364 1,1 %A A346364 _David Consiglio, Jr._, Jul 13 2021