cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346365 Numbers that are the sum of six fifth powers in exactly ten ways.

This page as a plain text file.
%I A346365 #14 May 11 2024 20:43:41
%S A346365 55302546200,89999127392,96110537743,104484239200,120492759200,
%T A346365 121258798144,127794946400,133364991375,135030535200,136156575744,
%U A346365 151305014432,155434423925,174388570400,177099008000,179272687000,182844944832,184948721056,187873845500
%N A346365 Numbers that are the sum of six fifth powers in exactly ten ways.
%C A346365 This sequence differs from A344196:
%C A346365 180336745600 = 48^5 + 54^5 +  66^5 +  66^5 + 112^5 + 174^5
%C A346365              =  9^5 + 21^5 +  93^5 + 112^5 + 117^5 + 168^5
%C A346365              = 11^5 + 44^5 +  73^5 +  92^5 + 133^5 + 167^5
%C A346365              = 15^5 + 81^5 +  94^5 +  95^5 + 129^5 + 166^5
%C A346365              =  1^5 + 49^5 +  62^5 + 107^5 + 138^5 + 163^5
%C A346365              = 35^5 + 69^5 +  75^5 +  98^5 + 141^5 + 162^5
%C A346365              = 18^5 + 81^5 + 105^5 + 112^5 + 135^5 + 159^5
%C A346365              = 14^5 + 50^5 +  62^5 +  86^5 + 150^5 + 158^5
%C A346365              =  2^5 + 52^5 +  54^5 + 108^5 + 146^5 + 158^5
%C A346365              = 14^5 + 22^5 +  66^5 + 118^5 + 142^5 + 158^5
%C A346365              =  4^5 + 50^5 +  58^5 + 102^5 + 150^5 + 156^5,
%C A346365 so 180336745600 is in A344196, but is not in this sequence.
%H A346365 Sean A. Irvine, <a href="/A346365/b346365.txt">Table of n, a(n) for n = 1..57</a>
%e A346365 55302546200 = 34^5 + 38^5 + 50^5 + 57^5 + 95^5 + 136^5
%e A346365             = 23^5 + 49^5 + 61^5 + 69^5 + 107^5 + 131^5
%e A346365             = 24^5 + 37^5 + 63^5 + 81^5 + 104^5 + 131^5
%e A346365             = 21^5 + 35^5 + 60^5 + 94^5 + 100^5 + 130^5
%e A346365             = 57^5 + 60^5 + 71^5 + 75^5 + 109^5 + 128^5
%e A346365             = 19^5 + 37^5 + 56^5 + 96^5 + 104^5 + 128^5
%e A346365             = 35^5 + 41^5 + 53^5 + 69^5 + 115^5 + 127^5
%e A346365             = 16^5 + 49^5 + 53^5 + 83^5 + 112^5 + 127^5
%e A346365             = 35^5 + 37^5 + 40^5 + 88^5 + 119^5 + 121^5
%e A346365             = 11^5 + 24^5 + 71^5 + 104^5 + 109^5 + 121^5
%e A346365 so 55302546200 is a term.
%o A346365 (Python)
%o A346365 from itertools import combinations_with_replacement as cwr
%o A346365 from collections import defaultdict
%o A346365 keep = defaultdict(lambda: 0)
%o A346365 power_terms = [x**5 for x in range(1, 1000)]
%o A346365 for pos in cwr(power_terms, 6):
%o A346365     tot = sum(pos)
%o A346365     keep[tot] += 1
%o A346365     rets = sorted([k for k, v in keep.items() if v == 10])
%o A346365     for x in range(len(rets)):
%o A346365         print(rets[x])
%Y A346365 Cf. A344196, A345822, A346259, A346364.
%K A346365 nonn
%O A346365 1,1
%A A346365 _David Consiglio, Jr._, Jul 18 2021