cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346376 a(n) = n^4 + 14*n^3 + 63*n^2 + 98*n + 28.

This page as a plain text file.
%I A346376 #14 Jul 21 2021 09:33:23
%S A346376 28,204,604,1348,2580,4468,7204,11004,16108,22780,31308,42004,55204,
%T A346376 71268,90580,113548,140604,172204,208828,250980,299188,354004,416004,
%U A346376 485788,563980,651228,748204,855604,974148,1104580,1247668,1404204,1575004,1760908,1962780
%N A346376 a(n) = n^4 + 14*n^3 + 63*n^2 + 98*n + 28.
%C A346376 The product of eight consecutive positive integers can always be expressed as the difference of two squares: x^2 - y^2.
%C A346376 This sequence gives the x-values for each product. The y-values are A017113(n+4).
%C A346376 a(n) is always divisible by 4. In addition, we have (a(n)+16)/4 belongs to A028387.
%C A346376 Are 4 and 8 the unique values of k such that the product of k consecutive integers is always distant to upper square by a square?
%H A346376 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A346376 a(n) = A239035(n)^2 - A017113(n+4)^2.
%F A346376 a(n) = 4*(A028387(A046691(n+2)) - 4).
%F A346376 G.f.: 4*(7 + 16*x - 34*x^2 + 22*x^3 - 5*x^4)/(1 - x)^5. - _Stefano Spezia_, Jul 14 2021
%Y A346376 Cf. A239035, A017113, A028387, A046691.
%K A346376 nonn,easy
%O A346376 0,1
%A A346376 _Lamine Ngom_, Jul 14 2021