A346377 a(n) is the number of solutions k to A075254(k) = n.
1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 0, 1, 2, 1, 0, 2, 0, 0, 1, 0, 1, 0, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 3, 0, 0, 2, 1, 0, 1, 0, 0, 0, 2, 0, 3, 1, 0, 1, 0, 2, 0, 0, 1, 0, 0, 2, 1, 2, 0, 1, 0, 1, 2, 0, 0, 0, 2, 1, 3, 1, 0, 1, 1
Offset: 1
Keywords
Examples
a(14) = 2 because there are two solutions to A075254(k) = 14, namely A075254(7) = 7+7 = 14 A075254(8) = 8+2+2+2 = 14
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2])+n end proc: N:= 100: # for a(1)..a(N) V:= Vector(N): for n from 1 to N do v:= f(n); if v <= N then V[v]:= V[v]+1 fi od: convert(V[1..N],list);
-
Mathematica
f[1] = 1; f[n_] := n + Plus @@ Times @@@ FactorInteger[n]; m = 100; v = Table[0, {m}]; Do[i = f[n]; If[i <= m, v[[i]]++], {n, 1, m}]; v (* Amiram Eldar, Jul 14 2021 *)
Comments