cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346393 Irregular triangle read by rows: the n-th row gives the divisors of n ending with the final digit of n.

This page as a plain text file.
%I A346393 #38 Mar 05 2022 11:07:24
%S A346393 1,2,3,4,5,6,7,8,9,10,1,11,2,12,13,14,5,15,16,17,18,19,10,20,1,21,2,
%T A346393 22,23,4,24,5,25,26,27,28,29,10,30,1,31,2,32,3,33,34,5,35,6,36,37,38,
%U A346393 39,10,20,40,1,41,2,42,43,4,44,5,15,45,46,47,8,48,49,10,50
%N A346393 Irregular triangle read by rows: the n-th row gives the divisors of n ending with the final digit of n.
%H A346393 Stefano Spezia, <a href="/A346393/b346393.txt">First 5000 rows of the triangle, flattened</a>
%e A346393 The triangle begins:
%e A346393     1
%e A346393     2
%e A346393     3
%e A346393     4
%e A346393     5
%e A346393     6
%e A346393     7
%e A346393     8
%e A346393     9
%e A346393    10
%e A346393     1     11
%e A346393     2     12
%e A346393    13
%e A346393    14
%e A346393     5     15
%e A346393    16
%e A346393    17
%e A346393    18
%e A346393    19
%e A346393    10     20
%e A346393     1     21
%e A346393     2     22
%e A346393    23
%e A346393     4     24
%e A346393     5     25
%e A346393    26
%e A346393    27
%e A346393    28
%e A346393    29
%e A346393    10     30
%e A346393     1     31
%e A346393     2     32
%e A346393     3     33
%e A346393    34
%e A346393     5     35
%e A346393     6     36
%e A346393    37
%e A346393    38
%e A346393    39
%e A346393    10     20     40
%e A346393    ...
%t A346393 r[n_]:=Drop[Select[Divisors[n],(Mod[#,10]==Mod[n,10]&)]]; Flatten[Array[r, 50]]
%o A346393 (Python)
%o A346393 from sympy import divisors
%o A346393 def auptorow(nn):
%o A346393     for n in range(1, nn+1):
%o A346393         yield from [d for d in divisors(n) if d%10 == n%10]
%o A346393 print([an for an in auptorow(50)]) # _Michael S. Branicky_, Jul 21 2021
%o A346393 (PARI) row(n) = select(x->(x%10) == (n%10), divisors(n)); \\ _Michel Marcus_, Jul 25 2021
%Y A346393 Cf. A010879, A027750, A330348 (row length).
%K A346393 nonn,tabf,base
%O A346393 1,2
%A A346393 _Stefano Spezia_, Jul 21 2021