This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346401 #15 Jul 23 2021 02:25:12 %S A346401 13,21,15,21,17,25,21,29,25,33,29,37,33,41,37,45,41,49,45,53,49,57 %N A346401 a(n) is the minimum number of pebbles such that any assignment of those pebbles on a complete graph with n vertices is a next-player winning game in the two-player impartial (3, 2) pebbling game. %C A346401 A (3,2) pebbling move involves removing 3 pebbles from a vertex in a simple graph and placing 2 pebbles on an adjacent vertex. %C A346401 A two-player impartial (3,2) pebbling game involves two players alternating (3,2) pebbling moves. The first player unable to make a move loses. %D A346401 E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical Plays, Vol. 1, CRC Press, 2001. %H A346401 E. Fiorini, M. Lind, A. Woldar, and T. W. H. Wong,<a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Wong/wong31.html">Characterizing Winning Positions in the Impartial Two-Player Pebbling Game on Complete Graphs</a>, Journal of Integer Sequences, 24(6), 2021. %F A346401 a(n) = 2n+3 when n >= 7 is odd (conjectured). %F A346401 a(n) = 2n+9 when n >= 6 is even (conjectured). %e A346401 For n=6, a(6)=21 is the least number of pebbles for which every (3,2) game on K_6 is a next-player winning game regardless of assignment. %e A346401 For n=7, a(7)=17 is the least number of pebbles for which every (3,2) game on K_7 is a next-player winning game regardless of assignment. %t A346401 remove = 3; add = 2; %t A346401 (*Given n and m,list all possible assignments.*) %t A346401 alltuples[n_, m_] := IntegerPartitions[m + n, {n}] - 1; %t A346401 (*Given an assignment,list all resultant assignments after one pebbling move; only work for n>=3.*) %t A346401 pebblemoves[config_] := Block[{n, temp}, %t A346401 n = Length[config]; %t A346401 temp = Table[config, {i, n (n - 1)}] + %t A346401 Permutations[Join[{-remove, add}, Table[0, {i, n - 2}]]]; %t A346401 temp = Select[temp, Min[#] >= 0 &]; %t A346401 temp = ReverseSort[DeleteDuplicates[ReverseSort /@ temp]]]; %t A346401 (*Given n and m,list all assignments that are P-games.*) %t A346401 Plist = {}; %t A346401 plist[n_, m_] := Block[{index, tuples}, %t A346401 While[Length[Plist] < n, index = Length[Plist]; %t A346401 AppendTo[Plist, {{Join[{1}, Table[0, {i, index}]]}}]]; %t A346401 Do[AppendTo[Plist[[n]], {}]; tuples = alltuples[n, i]; %t A346401 Do[If[Not[IntersectingQ[pebblemoves[tuples[[j]]], %t A346401 If[i > (remove - add), Plist[[n, i - (remove - add)]], {}]]], %t A346401 AppendTo[Plist[[n, i]], tuples[[j]]]], {j, Length[tuples]}], %t A346401 {i, Length[Plist[[n]]] + 1, m}]; Plist[[n, m]]]; %t A346401 Do[m = 1; While[plist[n, m] != {}, m++]; Print[" n=", n, " m=", m], {n, 3, 24}] %Y A346401 Cf. A340631, A084964, A346197. %K A346401 nonn,more %O A346401 3,1 %A A346401 _Kayla Barker_, _Mia DeStefano_, _Eugene Fiorini_, _Michael Gohn_, _Joe Miller_, _Jacob Roeder_, _Wing Hong Tony Wong_, Jul 15 2021