This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346408 #21 Jul 26 2021 06:52:13 %S A346408 2,3,5,7,13,29,31,41,43,47,61,83,103,113,131,137,139,151,157,173,193, %T A346408 211,223,227,233,241,263,269,277,281,311,317,337,353,367,373,379,389, %U A346408 397,401,409,421,443,461,467,487,557,571,577,599,601,641,647,673,683 %N A346408 Primes whose bitwise XOR of decimal digits is a prime. %H A346408 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bitwise operation">Bitwise operation</a> %e A346408 421 is a term because it is a prime whose bitwise XOR of digits is 7 which is also a prime. %p A346408 b:= l-> `if`(l=[], 0, Bits[Xor](l[1], b(subsop(1=[][], l)))): %p A346408 q:= n-> isprime(b(convert(n, base, 10))): %p A346408 select(q, [ithprime(i)$i=1..160])[]; # _Alois P. Heinz_, Jul 21 2021 %t A346408 Select[Range[1000], PrimeQ[#] && PrimeQ[BitXor @@ IntegerDigits[#]] &] (* _Amiram Eldar_, Jul 21 2021 *) %o A346408 (Sage) %o A346408 def XOR(a, b): %o A346408 return a ^^ b %o A346408 [n for n in (0..100) if (n in Primes() and reduce(XOR, map(lambda x: int(x), str(n))) in Primes())] %Y A346408 Cf. A000040, A346511 (XOR of digits of n). %K A346408 base,nonn,less %O A346408 1,1 %A A346408 _Jeremias M. Gomes_, Jul 21 2021