This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346420 #13 Feb 16 2025 08:34:02 %S A346420 2,2,1,4,6,2,2,6,2,1,8,2,2,2,78,1,1,84,10,4,2,2,6,1,4,546,2,8,12,2,2, %T A346420 12,8,2,10,4,1062,6,1,7176,14,2,2,14,1,1,4,24,8,40,26,138,2,5,16,6,2, %U A346420 16,11934,2,3,60,826,2,250,10,2,78,1,12,18,1,2,18,1,1,2244,6,84 %N A346420 a(n) is twice the coefficient of the radical part in the fundamental unit of Q(sqrt(A000037(n))) where A000037 lists the nonsquare numbers (Version 2). %C A346420 The radical part is actually sqrt(A007913(A000037(n))) where A007913(m) is the squarefree part of m. - _Michel Marcus_, Jun 26 2020 %C A346420 How does this sequence differ from A048942? The definitions of both sequences are identical, but the second comment in A048942 states the terms differ from n = 14 onwards. - _Felix Fröhlich_, Jun 16 2022 %H A346420 S. R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/">Class number theory</a> %H A346420 Steven R. Finch, <a href="/A000924/a000924.pdf">Class number theory</a> [Cached copy, with permission of the author] %H A346420 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FundamentalUnit.html">Fundamental Unit.</a> %o A346420 (PARI) f(n) = {if (issquare(n), return (0)); if (!issquarefree(n), m = core(n), m = n); my(u = abs(2*polcoeff(lift(bnfinit(x^2-m, 1).fu[1]), 0))); if (u^2==1, return (1)); if (u^2==4, return (sqrtint((u^2+4)/m));); if (u^2 < 4, return((u^2+4)/n)); my(v2 = [(u^2-4)/m, (u^2+4)/m]); sqrtint(vecmin(select(x->denominator(x)==1, v2)));} %o A346420 lista(nn) = apply(f, select(x->!issquare(x), [1..nn])); \\ _Michel Marcus_, Jun 25 2020; corrected Jun 16 2022 %Y A346420 Cf. A000037, A007913, A346419, A048941, A048942. %K A346420 nonn %O A346420 1,1 %A A346420 _Sean A. Irvine_