1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 6, 2, 4, 4, 8, 1, 2, 2, 6, 2, 6, 6, 12, 2, 4, 4, 18, 4, 8, 8, 16, 1, 2, 2, 6, 2, 6, 6, 12, 2, 6, 6, 24, 6, 12, 12, 24, 2, 4, 4, 18, 4, 18, 18, 36, 4, 8, 8, 54, 8, 16, 16, 32, 1, 2, 2, 6, 2, 6, 6, 12, 2, 6, 6, 24, 6, 12, 12, 24, 2
Offset: 0
a(6) = 4 because the binary expansion of 6 is 110 and we have [(10), 1(10)] -> [1, 1]. Increasing these values by 1 gives us 2*2 = 4.
a(18) = 6 because the binary expansion of 18 is 10010 and we have [(10), (10)0(10)] -> [1, 2]. Increasing these values by 1 gives us 2*3 = 6.
a(26) = 18 because the binary expansion of 26 is 11010 and we have [(10), (10)(10), 1(10)(10)] -> [1, 2, 2]. Increasing these values by 1 gives us 2*3*3 = 18.
For n=482, the bits of n and the resulting product for a(n) are
n = 482 = binary 1 1 1 1 0 0 0 1 0
a(n) = 162 = 3*3*3*3 *2
n=3863 = binary 111100010111 is the same a(n) = 162 since its final trailing "111" has no effect.
Comments