cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346426 Number A(n,k) of partitions of the (n+k)-multiset {0,...,0,1,2,...,k} with n 0's; square array A(n,k), n>=0, k>=0, read by antidiagonals.

This page as a plain text file.
%I A346426 #41 Aug 18 2021 15:28:05
%S A346426 1,1,1,2,2,2,5,5,4,3,15,15,11,7,5,52,52,36,21,12,7,203,203,135,74,38,
%T A346426 19,11,877,877,566,296,141,64,30,15,4140,4140,2610,1315,592,250,105,
%U A346426 45,22,21147,21147,13082,6393,2752,1098,426,165,67,30,115975,115975,70631,33645,13960,5317,1940,696,254,97,42
%N A346426 Number A(n,k) of partitions of the (n+k)-multiset {0,...,0,1,2,...,k} with n 0's; square array A(n,k), n>=0, k>=0, read by antidiagonals.
%C A346426 Also number A(n,k) of factorizations of 2^n * Product_{i=1..k} prime(i+1); A(3,1) = 7: 2*2*2*3, 2*3*4, 4*6, 2*2*6, 3*8, 2*12, 24; A(1,2) = 5: 2*3*5, 5*6, 3*10, 2*15, 30.
%H A346426 Alois P. Heinz, <a href="/A346426/b346426.txt">Antidiagonals n = 0..140, flattened</a>
%F A346426 A(n,k) = A001055(A000079(n)*A070826(k+1)).
%F A346426 A(n,k) = Sum_{j=0..k} A048993(k,j)*A292508(n,j+1).
%F A346426 A(n,k) = Sum_{j=0..k} Stirling2(k,j)*Sum_{i=0..n} binomial(j+i-1,i)*A000041(n-i).
%e A346426 A(2,2) = 11: 00|1|2, 001|2, 1|002, 0|0|1|2, 0|01|2, 0|1|02, 01|02, 00|12, 0|0|12, 0|012, 0012.
%e A346426 Square array A(n,k) begins:
%e A346426    1,  1,   2,    5,   15,    52,    203,     877,    4140, ...
%e A346426    1,  2,   5,   15,   52,   203,    877,    4140,   21147, ...
%e A346426    2,  4,  11,   36,  135,   566,   2610,   13082,   70631, ...
%e A346426    3,  7,  21,   74,  296,  1315,   6393,   33645,  190085, ...
%e A346426    5, 12,  38,  141,  592,  2752,  13960,   76464,  448603, ...
%e A346426    7, 19,  64,  250, 1098,  5317,  28009,  158926,  963913, ...
%e A346426   11, 30, 105,  426, 1940,  9722,  52902,  309546, 1933171, ...
%e A346426   15, 45, 165,  696, 3281, 16972,  95129,  572402, 3670878, ...
%e A346426   22, 67, 254, 1106, 5372, 28582, 164528, 1015356, 6670707, ...
%e A346426   ...
%p A346426 s:= proc(n) option remember; expand(`if`(n=0, 1,
%p A346426       x*add(s(n-j)*binomial(n-1, j-1), j=1..n)))
%p A346426     end:
%p A346426 S:= proc(n, k) option remember; coeff(s(n), x, k) end:
%p A346426 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=0,
%p A346426       combinat[numbpart](n), add(b(n-j, i-1), j=0..n)))
%p A346426     end:
%p A346426 A:= (n, k)-> add(S(k, j)*b(n, j), j=0..k):
%p A346426 seq(seq(A(n, d-n), n=0..d), d=0..10);
%t A346426 s[n_] := s[n] = Expand[If[n == 0, 1, x Sum[s[n - j] Binomial[n - 1, j - 1], {j, 1, n}]]];
%t A346426 S[n_, k_] := S[n, k] = Coefficient[s[n], x, k];
%t A346426 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, PartitionsP[n], Sum[b[n - j, i - 1], {j, 0, n}]]];
%t A346426 A[n_, k_] := Sum[S[k, j] b[n, j], {j, 0, k}];
%t A346426 Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* _Jean-François Alcover_, Aug 18 2021, after _Alois P. Heinz_ *)
%Y A346426 Columns k=0-10 give: A000041, A000070, A082775, A093802, A346857, A346858, A346859, A346860, A346861, A346862, A346863.
%Y A346426 Rows n=0+1, 2-10 give: A000110, A035098, A169587, A169588, A346851, A346852, A346853, A346854, A346855, A346856.
%Y A346426 Main diagonal gives A346424.
%Y A346426 Antidiagonal sums give A346428.
%Y A346426 Cf. A000079, A001055, A008277, A048993, A070826, A126442, A129306, A219727, A255903, A292508, A346520.
%K A346426 nonn,tabl
%O A346426 0,4
%A A346426 _Alois P. Heinz_, Jul 16 2021