cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346427 E.g.f.: -log(1 - log(1 + x) * exp(x)).

This page as a plain text file.
%I A346427 #19 Jul 19 2021 08:17:33
%S A346427 0,1,2,7,29,183,1319,12122,124802,1508581,20150509,302637564,
%T A346427 4960500764,89164162579,1730245993111,36241995276276,812108432244304,
%U A346427 19430625834864633,493622198791114665,13283773364613034324,377224137563670860492,11278211794764786428831
%N A346427 E.g.f.: -log(1 - log(1 + x) * exp(x)).
%H A346427 <a href="/index/Lo#logarithmic">Index entries for sequences related to logarithmic numbers</a>
%F A346427 a(0) = 0; a(n) = -(-1)^n * A002741(n) - (1/n) * Sum_{k=1..n-1} (-1)^(n-k) * binomial(n,k) * A002741(n-k) * k * a(k).
%t A346427 nmax = 21; CoefficientList[Series[-Log[1 - Log[1 + x] Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
%t A346427 A002741[n_] := A002741[n] = n! Sum[(-1)^k/((n - k) k!), {k, 0, n - 1}]; a[0] = 0; a[n_] := a[n] = -(-1)^n A002741[n] - (1/n) Sum[(-1)^(n - k) Binomial[n, k] A002741[n - k] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 21}]
%o A346427 (PARI) my(x='x+O('x^25)); concat(0, Vec(serlaplace(-log(1 - log(1+x) * exp(x))))) \\ _Michel Marcus_, Jul 19 2021
%Y A346427 Cf. A002741, A009321, A009324, A298374, A345454.
%K A346427 nonn
%O A346427 0,3
%A A346427 _Ilya Gutkovskiy_, Jul 18 2021