cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346452 a(n) = [x^n] Product_{k>=1} (1 + n^(k-1)*x^k) / (1 - n^(k-1)*x^k).

This page as a plain text file.
%I A346452 #10 Jul 20 2021 15:57:52
%S A346452 1,2,6,32,242,2472,31850,490912,8897058,185373722,4344896842,
%T A346452 113667973344,3283155709106,103486639506824,3544144942010010,
%U A346452 131038318999642112,5192873357864667202,219952910549005233840,9916266932124308092586,473513072853351852164160
%N A346452 a(n) = [x^n] Product_{k>=1} (1 + n^(k-1)*x^k) / (1 - n^(k-1)*x^k).
%H A346452 Vaclav Kotesovec, <a href="/A346452/b346452.txt">Table of n, a(n) for n = 0..385</a>
%F A346452 a(n) ~ c * n^(n-1), where c = sqrt(2) * BesselI(1, 2*sqrt(2)) = 4.78966619...
%t A346452 Table[SeriesCoefficient[Product[(1 + n^(k - 1)*x^k)/(1 - n^(k - 1)*x^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
%t A346452 Join[{1}, Table[SeriesCoefficient[2*x + (n - 1)/(n + 1)*QPochhammer[-1/n, n*x]/QPochhammer[1/n, n*x], {x, 0, n}], {n, 1, 20}]]
%Y A346452 Cf. A340103, A338697, A346454.
%K A346452 nonn
%O A346452 0,2
%A A346452 _Vaclav Kotesovec_, Jul 19 2021