This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346465 #17 Oct 05 2021 20:24:48 %S A346465 9,11,18,27,32,36,45,50,53,54,63,68,72,74,78,81,90,95,99,100,108,116, %T A346465 117,126,127,135,137,144,147,150,153,155,158,162,171,179,180,182,189, %U A346465 198,200,204,207,216,221,225,233,234,242,243,250,252,261,263,270,279 %N A346465 Numbers k such that (4^k - 2)*(4^k - 1)/Clausen(2*k, 1) is not squarefree, where Clausen(n, m) = A160014(n, m). %C A346465 Also numbers k such that 6*GaussBinomial(2*k, 2, 2)/denominator(Bernoulli(2*k, 1)) is not squarefree. %F A346465 The positive multiples of 9 form a subsequence. %F A346465 k is a term if and only if A346463(k) > A007947(A346463(k)). %p A346465 with(NumberTheory): isa := n -> not IsSquareFree(((4^n - 2)*(4^n - 1))/ %p A346465 mul(i, i = select(isprime, map(i -> i+1, Divisors(2*n))))): %p A346465 select(isa, [$(1..100)]); %t A346465 q[n_] := Product[k, {k, Select[Table[d + 1, {d, Divisors[2 n]}], PrimeQ]}]; %t A346465 isA[n_] := ! SquareFreeQ[((4^n - 2) (4^n -1)) / q[n]]; %t A346465 Select[Range[50], isA] %Y A346465 Cf. A006095, A002445, A007947, A160014, A346463, A346464. %K A346465 nonn %O A346465 1,1 %A A346465 _Peter Luschny_, Jul 20 2021 %E A346465 More terms from _Jinyuan Wang_, Jul 23 2021