cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346465 Numbers k such that (4^k - 2)*(4^k - 1)/Clausen(2*k, 1) is not squarefree, where Clausen(n, m) = A160014(n, m).

This page as a plain text file.
%I A346465 #17 Oct 05 2021 20:24:48
%S A346465 9,11,18,27,32,36,45,50,53,54,63,68,72,74,78,81,90,95,99,100,108,116,
%T A346465 117,126,127,135,137,144,147,150,153,155,158,162,171,179,180,182,189,
%U A346465 198,200,204,207,216,221,225,233,234,242,243,250,252,261,263,270,279
%N A346465 Numbers k such that (4^k - 2)*(4^k - 1)/Clausen(2*k, 1) is not squarefree, where Clausen(n, m) = A160014(n, m).
%C A346465 Also numbers k such that 6*GaussBinomial(2*k, 2, 2)/denominator(Bernoulli(2*k, 1)) is not squarefree.
%F A346465 The positive multiples of 9 form a subsequence.
%F A346465 k is a term if and only if A346463(k) > A007947(A346463(k)).
%p A346465 with(NumberTheory): isa := n -> not IsSquareFree(((4^n - 2)*(4^n - 1))/
%p A346465 mul(i, i = select(isprime, map(i -> i+1, Divisors(2*n))))):
%p A346465 select(isa, [$(1..100)]);
%t A346465 q[n_] := Product[k, {k, Select[Table[d + 1, {d, Divisors[2 n]}], PrimeQ]}];
%t A346465 isA[n_] := ! SquareFreeQ[((4^n - 2) (4^n -1)) / q[n]];
%t A346465 Select[Range[50],  isA]
%Y A346465 Cf. A006095, A002445, A007947, A160014, A346463, A346464.
%K A346465 nonn
%O A346465 1,1
%A A346465 _Peter Luschny_, Jul 20 2021
%E A346465 More terms from _Jinyuan Wang_, Jul 23 2021