This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346466 #15 Dec 04 2021 12:40:07 %S A346466 1,1,2,1,4,1,6,1,2,1,10,1,12,1,2,1,16,1,18,1,2,1,22,1,4,1,2,1,28,1,30, %T A346466 1,2,1,1,1,36,1,2,1,40,1,42,1,4,1,46,1,6,1,2,1,52,1,1,1,2,1,58,1,60,1, %U A346466 2,1,4,1,66,1,2,1,70,1,72,1,2,1,1,1,78,1,2,1,82,1,4,1,2,1,88,1,6,1,2,1,1,1,96,1,2,1,100,1,102,1,4 %N A346466 The least common multiple of all divisors d of n-1 such that d+1 is a prime divisor of n; a(1) = 1. %H A346466 Antti Karttunen, <a href="/A346466/b346466.txt">Table of n, a(n) for n = 1..20000</a> %H A346466 <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a> %F A346466 a(n) = LCM_{p-1|n-1, p|n, p prime} (p-1). %F A346466 a(n) = p-1 for prime powers n = p^e, e >= 1; a(n) = 1 for any even n = 2k. - _M. F. Hasler_, Nov 23 2021 %e A346466 From _M. F. Hasler_, Nov 23 2021: (Start) %e A346466 For n = 2, the only prime factor of n is p = 2, and p-1 = 1 divides n-1 = 1, therefore a(2) = LCM { 1 } = 1. %e A346466 For n = 35, the prime factors of n are p = 5 and p = 7; but neither 5-1 = 4 nor 7-1 = 6 divides n-1 = 34, therefore a(35) = LCM {} = 1. (End) %o A346466 (PARI) A346466(n) = lcm(apply(p->if((n-1)%(p-1),1,(p-1)), factor(n)[, 1])); %o A346466 (PARI) A346466(n) = if(1==n,n,my(m=1); fordiv(n-1,d,if(isprime(1+d)&&!(n%(1+d)),m = lcm(m,d))); (m)); %o A346466 (PARI) apply( {A346466(n)=lcm([p-1|p<-factor(n)[,1],(n-1)%(p-1)==0])}, [1..99]) \\ _M. F. Hasler_, Nov 23 2021 %Y A346466 Cf. also A173614, A346467. %K A346466 nonn %O A346466 1,3 %A A346466 _Antti Karttunen_, Jul 19 2021