This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346467 #33 Nov 24 2021 09:22:15 %S A346467 1,1,2,1,4,1,6,1,4,1,10,1,12,1,2,1,16,1,18,1,20,1,22,1,12,1,2,1,28,1, %T A346467 30,1,16,1,2,1,36,1,2,1,40,1,42,1,44,1,46,1,48,1,10,1,52,1,18,1,28,1, %U A346467 58,1,60,1,2,1,16,1,66,1,4,1,70,1,72,1,2,1,4,1,78,1,80,1,82,1,84,1,2,1,88,1,90,1,92,1,2,1,96 %N A346467 a(n) is the least common multiple of the divisors d of n-1 such that d+1 is prime; a(1) = 1. %C A346467 Original definition: a(n) is the least common multiple of p-1 computed over all primes p for which p-1 is a divisor of n-1; a(1) = 1. %H A346467 Robert Israel, <a href="/A346467/b346467.txt">Table of n, a(n) for n = 1..10000</a> %F A346467 a(n) = A002322(A027642(n-1)). %F A346467 a(n) = A346466(n) * A346481(n). %F A346467 For n > 1, a(n) = (n-1) / A346468(n). %F A346467 a(n) = LCM { d | n-1; d+1 is prime }, where "|" means "divides". - _M. F. Hasler_, Nov 23 2021 %p A346467 f:= proc(n) %p A346467 if n::even then return 1 fi; %p A346467 ilcm(op(select(d -> isprime(d+1), numtheory:-divisors(n-1)))); %p A346467 end proc: %p A346467 f(1):= 1: %p A346467 map(f, [$1..200]); # _Robert Israel_, Aug 30 2021 %t A346467 {1}~Join~Array[CarmichaelLambda@ Denominator@ BernoulliB@ # &, 96] (* _Michael De Vlieger_, Jul 22 2021 *) %o A346467 (PARI) A346467(n) = if(1==n,n,my(m=1); fordiv(n-1,d,if(isprime(1+d),m = lcm(m,d))); (m)); %o A346467 (PARI) apply( {A346467(n)=if(n>1, lcm([d|d<-divisors(n-1),isprime(d+1)]), 1)}, [1..99]) \\ _M. F. Hasler_, Nov 23 2021 %Y A346467 Cf. A002322, A027642, A173614, A346466, A346468, A346481. %Y A346467 Cf. also A343979. %K A346467 nonn %O A346467 1,3 %A A346467 _Antti Karttunen_ and _Thomas Ordowski_, Jul 22 2021