This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346475 #17 Aug 14 2021 22:20:24 %S A346475 0,1,1,5,1,7,1,7,1,31,13,41,1,1,11,37,2,47,1,11,7,43,19,53,2,13,17,49, %T A346475 11,59,1,3,5,41,17,55,1,59,71,247,53,317,19,73,23,289,127,359,13,29, %U A346475 113,331,37,401,11,101,67,373,169,443,1,11,13,47,5,61,17,23,43,277,121,347,1,83,107,319,71,389,31,97,2,361,163 %N A346475 a(n) = A342919(A276086(n)). %C A346475 For n >= 1, each term a(n) is a divisor of A342002(n). %H A346475 Antti Karttunen, <a href="/A346475/b346475.txt">Table of n, a(n) for n = 0..13860</a> %H A346475 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %F A346475 a(n) = A342919(A276086(n)). %F A346475 a(n) = A327860(n) / gcd(A327860(n), A346470(n)). %o A346475 (PARI) %o A346475 A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615 %o A346475 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); %o A346475 A342919(n) = { my(u=A003415(n)); (u/gcd(u, A001615(n))); }; %o A346475 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; %o A346475 A346475(n) = A342919(A276086(n)); %Y A346475 Cf. A001615, A003415, A276086, A327860, A342919, A346470, A346471. %Y A346475 Cf. also A342002, A345930, A346474 for sequences with similar scatter plots. %K A346475 nonn,base,look %O A346475 0,4 %A A346475 _Antti Karttunen_, Jul 21 2021