This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346482 #14 Nov 14 2021 00:49:00 %S A346482 1,0,0,-1,0,-1,0,-1,-1,-1,0,-1,0,-1,-1,0,0,-1,0,-1,-1,-1,0,1,-1,-1,-1, %T A346482 -1,0,-1,0,1,-1,-1,-1,2,0,-1,-1,1,0,-1,0,-1,-1,-1,0,3,-1,-1,-1,-1,0,1, %U A346482 -1,1,-1,-1,0,3,0,-1,-1,1,-1,-1,0,-1,-1,-1,0,5,0,-1,-1,-1,-1,-1,0,3,0,-1,0,3,-1,-1,-1,1,0,3 %N A346482 Dirichlet inverse of A005171, the characteristic function of nonprimes. %C A346482 In addition to A168645, -1's occur also in the following positions: 256, 512, 6561, 16384, 19683, 32768, 390625, 1048576, ... %H A346482 Antti Karttunen, <a href="/A346482/b346482.txt">Table of n, a(n) for n = 1..20000</a> %F A346482 a(1) = 1; and for n > 2, a(n) = -Sum_{d|n, d<n} a(d) * A005171(n/d). %F A346482 a(n) = A346483(n) - A005171(n). %o A346482 (PARI) %o A346482 up_to = 65537; %o A346482 DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v. %o A346482 A005171(n) = (1-isprime(n)); %o A346482 v346482 = DirInverseCorrect(vector(up_to,n,A005171(n))); %o A346482 A346482(n) = v346482[n]; %Y A346482 Cf. A005171, A010051, A018252, A168645, A346483. %Y A346482 Union of A000040 and A346484 gives the positions of zeros. %K A346482 sign %O A346482 1,36 %A A346482 _Mats Granvik_ and _Antti Karttunen_, Aug 17 2021