cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346483 Sum of A005171 (characteristic function of nonprimes) and its Dirichlet inverse.

This page as a plain text file.
%I A346483 #19 Nov 14 2021 00:49:08
%S A346483 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,2,0,0,
%T A346483 0,3,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,0,2,0,2,0,0,0,4,0,0,0,2,0,0,0,0,
%U A346483 0,0,0,6,0,0,0,0,0,0,0,4,1,0,0,4,0,0,0,2,0,4,0,0,0,0,0,3,0,0,0,3,0,0,0,2,0
%N A346483 Sum of A005171 (characteristic function of nonprimes) and its Dirichlet inverse.
%C A346483 The first negative term is a(192) = -1.
%C A346483 Positions of nonzero terms are given by A033987, except for positions n = 256, 512, 6561, 16384, 19683, 32768, 390625, 1048576, ..., at which a(n) = 0 also.
%H A346483 Antti Karttunen, <a href="/A346483/b346483.txt">Table of n, a(n) for n = 1..20000</a>
%F A346483 a(n) = A005171(n) + A346482(n).
%F A346483 For n > 1, a(n) = -Sum_{d|n, 1<d<n} A005171(d) * A346482(n/d).
%t A346483 nn = 87; b = Table[If[PrimeQ[n], 1, 0], {n, nn}]; a = 1 - b; A = Table[Table[If[Mod[n, k] == 0, a[[n/k]], 0], {k, 1, nn}], {n, 1, nn}]; B = Inverse[A]; S = A[[Range[nn]]] + B[[Range[nn]]]; S[[All, 1]]
%o A346483 (PARI)
%o A346483 up_to = 65537;
%o A346483 DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
%o A346483 A005171(n) = (1-isprime(n));
%o A346483 v346482 = DirInverseCorrect(vector(up_to,n,A005171(n)));
%o A346483 A346482(n) = v346482[n];
%o A346483 A346483(n) = (A005171(n)+A346482(n));
%Y A346483 Cf. A005171, A010051, A033987, A346482.
%K A346483 sign
%O A346483 1,1
%A A346483 _Mats Granvik_ and _Antti Karttunen_, Aug 17 2021