This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346490 #18 Mar 12 2022 11:33:30 %S A346490 1,2,6,18,61,228,926,4126,19688,101582,556763,3258810,20134527, %T A346490 131591030,902915694,6506096000,48986713992,385159376478, %U A346490 3151457714098,26806601933838,236457090358459,2160451562170100,20408176433186475,199086685731569740,2002713693735431017 %N A346490 Total number of partitions of all n-multisets {1,2,...,n-j,1,2,...,j} for 0 <= j <= n. %C A346490 Also total number of factorizations of Product_{i=1..n-j} prime(i) * Product_{i=1..j} prime(i) for 0 <= j <= n. %H A346490 Alois P. Heinz, <a href="/A346490/b346490.txt">Table of n, a(n) for n = 0..576</a> %F A346490 a(n) = Sum_{j=0..n} A001055(A002110(n-j)*A002110(j)). %F A346490 a(n) = Sum_{j=0..n} A346500(n-j,j). %p A346490 b:= proc(n) option remember; `if`(n=0, 1, %p A346490 add(b(n-j)*binomial(n-1, j-1), j=1..n)) %p A346490 end: %p A346490 A:= proc(n, k) option remember; `if`(n<k, A(k, n), %p A346490 `if`(k=0, b(n), (A(n+1, k-1)+add(A(n-k+j, j) %p A346490 *binomial(k-1, j), j=0..k-1)+A(n, k-1))/2)) %p A346490 end: %p A346490 a:= n-> add(A(n-j, j), j=0..n): %p A346490 seq(a(n), n=0..24); %t A346490 b[n_] := b[n] = If[n == 0, 1, %t A346490 Sum[b[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]]; %t A346490 A[n_, k_] := A[n, k] = If[n < k, A[k, n], %t A346490 If[k == 0, b[n], (A[n + 1, k - 1] + Sum[A[n - k + j, j] %t A346490 *Binomial[k - 1, j], {j, 0, k - 1}] + A[n, k - 1])/2]]; %t A346490 a[n_] := Sum[A[n - j, j], {j, 0, n}]; %t A346490 Table[a[n], {n, 0, 24}] (* _Jean-François Alcover_, Mar 12 2022, after _Alois P. Heinz_ *) %Y A346490 Antidiagonal sums of A346500. %Y A346490 Cf. A001055, A002110, A346428, A346518. %K A346490 nonn %O A346490 0,2 %A A346490 _Alois P. Heinz_, Jul 19 2021