cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346510 a(n) is the number of nontrivial divisors of A346507(n) ending with 1.

This page as a plain text file.
%I A346510 #17 Aug 21 2021 15:46:32
%S A346510 1,2,2,1,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,
%T A346510 2,2,2,2,2,2,2,4,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,4,
%U A346510 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,2,2,4,2,4,2
%N A346510 a(n) is the number of nontrivial divisors of A346507(n) ending with 1.
%F A346510 a(n) = A346392(A346507(n)) - 1.
%e A346510 a(42) = 4 since there are 4 nontrivial divisors of A346507(42) = 2541 ending with 1: 11, 21, 121 and 231.
%t A346510 b={}; For[n=1, n<=500, n++, For[k=1, k<n, k++, If[Mod[10n+1, 10k+1]==0 && Mod[(10n+1)/(10k+1), 10]==1 && 10n+1>Max[b], AppendTo[b, 10n+1]]]]; (* A346507 *) a={}; For[i =1, i<=Length[b], i++, AppendTo[a, Length[Drop[Select[Divisors[Part[b, i]], (Mod[#, 10]==1&)], -1]]-1]]; a
%o A346510 (PARI) f(n) = sumdiv(n, d, (d>1) && (d<n) && ((d%10)==1) && (((n/d) % 10) == 1));
%o A346510 apply(f, select(x->(f(x)), [1..5000])) \\ _Michel Marcus_, Jul 28 2021
%o A346510 (Python)
%o A346510 from sympy import divisors
%o A346510 def f(n): return sum(d%10 == 1 for d in divisors(n)[1:-1])
%o A346510 def A346507upto(lim): return sorted(set(a*b for a in range(11, lim//11+1, 10) for b in range(a, lim//a+1, 10)))
%o A346510 print(list(map(f, A346507upto(5000)))) # _Michael S. Branicky_, Jul 31 2021
%Y A346510 Cf. A017281, A070824, A346388 (ending with 5), A346389 (ending with 6), A346392, A346507, A346508, A346509.
%K A346510 nonn,base
%O A346510 1,2
%A A346510 _Stefano Spezia_, Jul 21 2021