This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346517 #24 Aug 19 2021 05:01:56 %S A346517 1,1,1,2,1,2,5,3,3,5,15,9,5,9,15,52,31,18,18,31,52,203,120,70,40,70, %T A346517 120,203,877,514,299,172,172,299,514,877,4140,2407,1393,801,457,801, %U A346517 1393,2407,4140,21147,12205,7023,4025,2295,2295,4025,7023,12205,21147 %N A346517 Number A(n,k) of partitions of the (n+k)-multiset {1,2,...,n,1,2,...,k} into distinct multisets; square array A(n,k), n>=0, k>=0, read by antidiagonals. %C A346517 Also number A(n,k) of factorizations of Product_{i=1..n} prime(i) * Product_{i=1..k} prime(i) into distinct factors; A(2,2) = 5: 2*3*6, 4*9, 3*12, 2*18, 36. %H A346517 Alois P. Heinz, <a href="/A346517/b346517.txt">Antidiagonals n = 0..140, flattened</a> %F A346517 A(n,k) = A045778(A002110(n)*A002110(k)). %F A346517 A(n,k) = A(k,n). %F A346517 A(n,k) = A322770(abs(n-k),min(n,k)). %e A346517 A(2,2) = 5: 1122, 11|22, 1|122, 112|2, 1|12|2. %e A346517 Square array A(n,k) begins: %e A346517 1, 1, 2, 5, 15, 52, 203, 877, ... %e A346517 1, 1, 3, 9, 31, 120, 514, 2407, ... %e A346517 2, 3, 5, 18, 70, 299, 1393, 7023, ... %e A346517 5, 9, 18, 40, 172, 801, 4025, 21709, ... %e A346517 15, 31, 70, 172, 457, 2295, 12347, 70843, ... %e A346517 52, 120, 299, 801, 2295, 6995, 40043, 243235, ... %e A346517 203, 514, 1393, 4025, 12347, 40043, 136771, 875936, ... %e A346517 877, 2407, 7023, 21709, 70843, 243235, 875936, 3299218, ... %e A346517 ... %p A346517 g:= proc(n, k) option remember; uses numtheory; `if`(n>k, 0, 1)+ %p A346517 `if`(isprime(n), 0, add(`if`(d>k or max(factorset(n/d))>d, 0, %p A346517 g(n/d, d-1)), d=divisors(n) minus {1, n})) %p A346517 end: %p A346517 p:= proc(n) option remember; `if`(n=0, 1, p(n-1)*ithprime(n)) end: %p A346517 A:= (n, k)-> g(p(n)*p(k)$2): %p A346517 seq(seq(A(n, d-n), n=0..d), d=0..10); %p A346517 # second Maple program: %p A346517 b:= proc(n) option remember; `if`(n=0, 1, %p A346517 add(b(n-j)*binomial(n-1, j-1), j=1..n)) %p A346517 end: %p A346517 A:= proc(n, k) option remember; `if`(n<k, A(k, n), %p A346517 `if`(k=0, b(n), (A(n+1, k-1)-add(A(n-k+j, j) %p A346517 *binomial(k-1, j), j=0..k-1)+A(n, k-1))/2)) %p A346517 end: %p A346517 seq(seq(A(n, d-n), n=0..d), d=0..10); %t A346517 (* Q is A322770 *) %t A346517 Q[m_, n_] := Q[m, n] = If[n == 0, BellB[m], (1/2)(Q[m+2, n-1] + Q[m+1, n-1] - Sum[Binomial[n-1, k] Q[m, k], {k, 0, n-1}])]; %t A346517 A[n_, k_] := Q[Abs[n-k], Min[n, k]]; %t A346517 Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Aug 19 2021 *) %Y A346517 Columns (or rows) k=0-10 give: A000110, A087648, A322773, A322774, A346897, A346898, A346899, A346900, A346901, A346902, A346903. %Y A346517 Main diagonal gives A094574. %Y A346517 First upper (or lower) diagonal gives A322771. %Y A346517 Second upper (or lower) diagonal gives A322772. %Y A346517 Antidiagonal sums give A346518. %Y A346517 Cf. A002110, A045778, A322770, A346500. %K A346517 nonn,tabl %O A346517 0,4 %A A346517 _Alois P. Heinz_, Jul 21 2021