This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346520 #26 Aug 05 2021 16:12:58 %S A346520 1,1,1,2,2,1,5,5,3,2,15,15,9,5,2,52,52,31,16,7,3,203,203,120,59,25,10, %T A346520 4,877,877,514,244,100,38,14,5,4140,4140,2407,1112,442,161,56,19,6, %U A346520 21147,21147,12205,5516,2134,750,249,80,25,8,115975,115975,66491,29505,11147,3799,1213,372,111,33,10 %N A346520 Number A(n,k) of partitions of the (n+k)-multiset {0,...,0,1,2,...,k} with n 0's into distinct multisets; square array A(n,k), n>=0, k>=0, read by antidiagonals. %C A346520 Also number A(n,k) of factorizations of 2^n * Product_{i=1..k} prime(i+1) into distinct factors; A(3,1) = 5: 2*3*4, 4*6, 3*8, 2*12, 24; A(1,2) = 5: 2*3*5, 5*6, 3*10, 2*15, 30. %H A346520 Alois P. Heinz, <a href="/A346520/b346520.txt">Antidiagonals n = 0..140, flattened</a> %F A346520 A(n,k) = A045778(A000079(n)*A070826(k+1)). %F A346520 A(n,k) = Sum_{j=0..k} Stirling2(k,j)*Sum_{i=0..n} binomial(j+i-1,i)*A000009(n-i). %e A346520 A(2,2) = 9: 00|1|2, 001|2, 1|002, 0|01|2, 0|1|02, 01|02, 00|12, 0|012, 0012. %e A346520 Square array A(n,k) begins: %e A346520 1, 1, 2, 5, 15, 52, 203, 877, 4140, ... %e A346520 1, 2, 5, 15, 52, 203, 877, 4140, 21147, ... %e A346520 1, 3, 9, 31, 120, 514, 2407, 12205, 66491, ... %e A346520 2, 5, 16, 59, 244, 1112, 5516, 29505, 168938, ... %e A346520 2, 7, 25, 100, 442, 2134, 11147, 62505, 373832, ... %e A346520 3, 10, 38, 161, 750, 3799, 20739, 121141, 752681, ... %e A346520 4, 14, 56, 249, 1213, 6404, 36332, 220000, 1413937, ... %e A346520 5, 19, 80, 372, 1887, 10340, 60727, 379831, 2516880, ... %e A346520 6, 25, 111, 539, 2840, 16108, 97666, 629346, 4288933, ... %e A346520 ... %p A346520 g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add( %p A346520 `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n) %p A346520 end: %p A346520 s:= proc(n) option remember; expand(`if`(n=0, 1, %p A346520 x*add(s(n-j)*binomial(n-1, j-1), j=1..n))) %p A346520 end: %p A346520 S:= proc(n, k) option remember; coeff(s(n), x, k) end: %p A346520 b:= proc(n, i) option remember; `if`(n=0, 1, %p A346520 `if`(i=0, g(n), add(b(n-j, i-1), j=0..n))) %p A346520 end: %p A346520 A:= (n, k)-> add(S(k, j)*b(n, j), j=0..k): %p A346520 seq(seq(A(n, d-n), n=0..d), d=0..12); %t A346520 g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j]*Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n]; %t A346520 s[n_] := s[n] = Expand[If[n == 0, 1, x*Sum[s[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]]]; %t A346520 S[n_, k_] := S[n, k] = Coefficient[s[n], x, k]; %t A346520 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, g[n], Sum[b[n - j, i - 1], {j, 0, n}]]]; %t A346520 A[n_, k_] := Sum[S[k, j]*b[n, j], {j, 0, k}]; %t A346520 Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* _Jean-François Alcover_, Jul 31 2021, after _Alois P. Heinz_ *) %Y A346520 Columns k=0-10 give: A000009, A036469, A346822, A346823, A346824, A346825, A346826, A346827, A346828, A346829, A346830. %Y A346520 Rows n=0+1,2-10 give: A000110, A087648, A346813, A346814, A346815, A346816, A346817, A346818, A346819, A346820. %Y A346520 Main diagonal gives A346519. %Y A346520 Antidiagonal sums give A346521. %Y A346520 Cf. A000040, A000079, A045778, A048993, A070826, A346426. %K A346520 nonn,tabl %O A346520 0,4 %A A346520 _Alois P. Heinz_, Jul 21 2021