cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A346531 a(n) is the number of edges of the polycube called "tower" described in A221529 where n is the longest side of its base.

Original entry on oeis.org

12, 12, 27, 36, 51, 72, 84, 105, 117, 144, 165
Offset: 1

Views

Author

Omar E. Pol, Jul 22 2021

Keywords

Comments

The tower is a geometric object associated to all partitions of n.
The height of the tower equals A000041(n-1).

Examples

			For n = 1 the tower is a cube, and a cube has 12 edges, so a(1) = 12.
		

Crossrefs

Cf. A000203 (area of the terraces), A000041 (height of the terraces), A066186 (volume), A345023 (surface area), A346530 (number of faces), A346532 (number of vertices).
Cf. A325301 (analog for the pyramid described in A245092).

Formula

a(n) = A346530(n) + A346532(n) - 2 (Euler's formula).

A346532 a(n) is the number of vertices of the polycube called "tower" described in A221529 where n is the longest side of its base.

Original entry on oeis.org

8, 8, 18, 24, 33, 47, 55, 69, 77, 95, 108
Offset: 1

Views

Author

Omar E. Pol, Jul 22 2021

Keywords

Comments

The height of the tower equals A000041(n-1).

Examples

			For n = 1 the tower is a cube, and a cube has 8 vertices, so a(1) = 8.
		

Crossrefs

Cf. A000203 (area of the terraces), A000041 (height of the terraces), A066186 (volume), A345023 (surface area), A346530 (number of faces), A346531 (number of edges).
Cf. A325302 (analog for the pyramid described in A245092).

Formula

a(n) = A346531(n) - A346530(n) + 2 (Euler's formula).
Showing 1-2 of 2 results.