This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346534 #40 Mar 31 2024 12:05:05 %S A346534 1,7,14,113,226,339,452,565,678,791,904,1017,1130,1243,33215,99532, %T A346534 364913,1725033,3450066,25510582,131002976,340262731,811528438, %U A346534 1963319607,6701487259,13402974518,20104461777,26805949036,33507436295,40208923554,567663097408 %N A346534 Denominators of approximations j/k for Pi such that abs(j/k - Pi)*sqrt(5)*k^2 < 1. %C A346534 Define two parameters E and M for a rational approximation j/k for an irrational number x: E = abs(j/k - x) (the absolute error) and M = 1/(sqrt(5)*k^2). Hurwitz's theorem states that every real number has infinitely many rational approximations that satisfy E/M < 1, making each such approximation a "strong approximation". This sequence lists the denominators of such numbers for the irrational number Pi. %H A346534 AMS, <a href="http://www.ams.org/publicoutreach/feature-column/fcarc-irrational2">Rational approximation of irrational numbers</a> %H A346534 Jon E. Schoenfield, <a href="/A346534/a346534.txt">Magma program with explanation of algorithm</a> %H A346534 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hurwitz%27s_theorem_(number_theory)">Hurwitz's theorem (number theory)</a> %e A346534 22/7 ~ 3.1428571 and E/M ~ 0.1385. %e A346534 355/113 ~ 3.1415929 and E/M ~ 0.0076. %e A346534 From _Jon E. Schoenfield_, Aug 06 2021: (Start) %e A346534 k j E = |j/k - Pi| M = 1/(sqrt(5)*k^2) E/M %e A346534 ----- ------ -------------- ------------------- ------- %e A346534 1 3 0.141592653590 0.44721359549995794 0.31661 %e A346534 7 22 0.001264489267 0.00912680807142771 0.13855 %e A346534 14 44 0.001264489267 0.00228170201785693 0.55419 %e A346534 113 355 0.000000266764 0.00003502338440755 0.00762 %e A346534 226 710 0.000000266764 0.00000875584610189 0.03047 %e A346534 339 1065 0.000000266764 0.00000389148715639 0.06855 %e A346534 452 1420 0.000000266764 0.00000218896152547 0.12187 %e A346534 565 1775 0.000000266764 0.00000140093537630 0.19042 %e A346534 678 2130 0.000000266764 0.00000097287178910 0.27420 %e A346534 791 2485 0.000000266764 0.00000071476294709 0.37322 %e A346534 904 2840 0.000000266764 0.00000054724038137 0.48747 %e A346534 1017 3195 0.000000266764 0.00000043238746182 0.61696 %e A346534 1130 3550 0.000000266764 0.00000035023384408 0.76167 %e A346534 1243 3905 0.000000266764 0.00000028944945791 0.92163 %e A346534 33215 104348 0.000000000332 0.00000000040536522 0.81810 %e A346534 (End) %t A346534 a={}; For[k=1,k<=10^6,k++,If[Abs[Round[k Pi]/k-Pi]Sqrt[5] k^2<1,AppendTo[a,k]]]; a (* _Stefano Spezia_, Aug 07 2021 *) %o A346534 (Magma) // See Links. %o A346534 (PARI) is(k) = my(j=round(Pi*k)); abs(j/k - Pi)*sqrt(5)*k^2 < 1; \\ _Jinyuan Wang_, Aug 06 2021 %Y A346534 Cf. A000796, A001203, A063673. %Y A346534 Cf. A002163 (sqrt(5)). %K A346534 nonn,frac %O A346534 1,2 %A A346534 _June Richardson_, Jul 22 2021 %E A346534 a(17)-a(19) from _Jinyuan Wang_, Aug 06 2021 %E A346534 a(20)-a(31) from _Jon E. Schoenfield_, Aug 06 2021