cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346537 Squares that are divisible by the product of their nonzero digits.

This page as a plain text file.
%I A346537 #39 Aug 16 2021 22:09:23
%S A346537 1,4,9,36,100,144,400,900,1024,1296,2304,2500,2916,3600,10000,11664,
%T A346537 12100,14400,22500,32400,40000,41616,78400,82944,90000,102400,110224,
%U A346537 121104,122500,129600,152100,176400,186624,200704,202500,219024,230400,250000,260100,291600
%N A346537 Squares that are divisible by the product of their nonzero digits.
%H A346537 Jean-Marie De Koninck and Florian Luca, <a href="https://doi.org/10.4171/PM/1777">Positive integers divisible by the product of their nonzero digits</a>, Port. Math. 64 (2007) 75-85. (This proof for upper bounds contains an error. See the paper below.)
%H A346537 Jean-Marie De Koninck and Florian Luca, <a href="https://doi.org/10.4171/PM/1999">Corrigendum to "Positive integers divisible by the product of their nonzero digits", Portugaliae Math. 64 (2007), 1: 75-85</a>, Port. Math. 74 (2017), 169-170.
%e A346537 For the perfect square 1024 = 32^2 the product of its nonzero digits is 8 which divides 1024.
%t A346537 Select[Range[500]^2, Divisible[#, Times @@ Select[IntegerDigits[#], #1 > 0 &]] &] (* _Amiram Eldar_, Jul 23 2021 *)
%o A346537 (Python)
%o A346537 from math import prod
%o A346537 def nzpd(n): return prod([int(d) for d in str(n) if d != '0'])
%o A346537 def ok(sqr): return sqr > 0 and sqr%nzpd(sqr) == 0
%o A346537 print(list(filter(ok, (i*i for i in range(541))))) # _Michael S. Branicky_, Jul 23 2021
%o A346537 (PARI) isok(m) = issquare(m) && !(m % vecprod(select(x->(x>0), digits(m))));
%o A346537 lista(nn) = for (m=1, nn, if (isok(m^2), print1(m^2, ", "))); \\ _Michel Marcus_, Jul 23 2021
%Y A346537 Intersection of A000290 and A055471.
%K A346537 nonn,base
%O A346537 1,2
%A A346537 _Michael Gohn_, _Joshua Harrington_, _Sophia Lebiere_, _Hani Samamah_, _Kyla Shappell_, _Wing Hong Tony Wong_, Jul 23 2021