This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346538 #39 Nov 03 2021 08:38:44 %S A346538 1,1,1,7,3,7,29,11,11,29,173,72,25,72,173,937,382,108,108,382,937, %T A346538 5527,2295,803,241,803,2295,5527,32309,13391,4632,1152,1152,4632, %U A346538 13391,32309,193663,80677,29450,9132,2545,9132,29450,80677,193663 %N A346538 Table read by antidiagonals: T(n,k) is the number of paths in the Z X Z grid joining (0,0) and (n,k) each of whose steps increases the Euclidean distance to the origin and has coordinates with absolute value at most 1. %F A346538 T(n,k) = T(k,n). %e A346538 Array begins: %e A346538 1, 1, 7, 29, 173, 937, 5527, ... %e A346538 1, 3, 11, 72, 382, 2295, 13391, ... %e A346538 7, 11, 25, 108, 803, 4632, 29450, ... %e A346538 29, 72, 108, 241, 1152, 9132, 56043, ... %e A346538 173, 382, 803, 1152, 2545, 12829, 106207, ... %e A346538 937, 2295, 4632, 9132, 12829, 28203, 147239, ... %e A346538 5527, 13391, 29450, 56043, 106207, 147239, 322681, ... %e A346538 ... %e A346538 T(6,4) = T(5,3) + T(5,4) + T(5,5) + T(6,3) = 9132 + 12829 + 28203 + 56043 =106207. %e A346538 T(7,5) = T(6,4) + T(6,5) + T(6,6) + T(7,4). %e A346538 T(7,6) = T(6,6) + T(7,5) + T(6,5). %e A346538 T(0,5) = T(-1,4) + T(0,4) + T(1,4). %p A346538 T:= proc(n, k) option remember; `if`([n, k]=[0$2], 1, add(add( %p A346538 `if`(i^2+j^2<n^2+k^2, T(i, j), 0), j=k-1..k+1), i=n-1..n+1)) %p A346538 end: %p A346538 seq(seq(T(n, d-n), n=0..d), d=0..8); # _Alois P. Heinz_, Sep 08 2021 %t A346538 rodean[{m_, n_}] := Select[ Complement[ Flatten[Table[{m, n} + {s, t}, {s, -1, 1}, {t, -1, 1}], 1] // Union, {{m, n}}], #[[1]]^2 + #[[2]]^2 < m^2 + n^2 &]; %t A346538 $RecursionLimit = 10^6; Clear[T]; T[{0, 0}] = 1; %t A346538 T[{m_, n_}] := T[{m, n}] = Sum[T[rodean[{m, n}][[i]]],{i,Length[rodean[{m,n}]]}] ; %t A346538 Table[T[{k, n - k}], {n, 0, 12}, {k, 0, n}] // Flatten %t A346538 (* Second program: *) %t A346538 T[n_, k_] := T[n, k] = If[{n, k} == {0, 0}, 1, Sum[Sum[If[i^2 + j^2 < n^2 + k^2, T[i, j], 0], {j, k - 1, k + 1}], {i, n - 1, n + 1}]]; %t A346538 Table[Table[T[n, d - n], {n, 0, d}], {d, 0, 8}] // Flatten (* _Jean-François Alcover_, Nov 03 2021, after _Alois P. Heinz_ *) %Y A346538 Main diagonal gives A346539. %Y A346538 Column (or row) k=0 gives A347814. %Y A346538 Cf. A008288, A001850, A001263, A006318, A001006, A114486. %K A346538 nonn,tabl %O A346538 0,4 %A A346538 _José María Grau Ribas_, Jul 23 2021