This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346547 #8 Sep 16 2021 23:53:03 %S A346547 1,1,6,36,282,2575,28075,340809,4657996,69874305,1145441713, %T A346547 20279904337,386803154474,7874727448757,170678885319787, %U A346547 3919163707551187,95029714996046680,2424604353738271201,64940619086990938317,1820746123923294245293,53328181409328560026038 %N A346547 E.g.f.: Product_{k>=1} 1 / (1 - x^k)^exp(x). %C A346547 Exponential transform of A002745. %F A346547 E.g.f.: exp( exp(x) * Sum_{k>=1} sigma(k) * x^k / k ). %F A346547 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A002745(k) * a(n-k). %t A346547 nmax = 20; CoefficientList[Series[Product[1/(1 - x^k)^Exp[x], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! %t A346547 nmax = 20; CoefficientList[Series[Exp[Exp[x] Sum[DivisorSigma[1, k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]! %t A346547 A002745[n_] := Sum[Binomial[n, k] DivisorSigma[1, k] (k - 1)!, {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A002745[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}] %Y A346547 Cf. A000203, A002745, A053529, A346545, A346546, A346548. %K A346547 nonn %O A346547 0,3 %A A346547 _Ilya Gutkovskiy_, Sep 16 2021