This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346550 #44 Dec 11 2021 03:35:18 %S A346550 1,2,4,13,54,278,1704,12126,98280,893904,9017280,99918120,1206500400, %T A346550 15768729360,221792780160,3340515069360,53641756586880, %U A346550 914849722725120,16514863528665600,314599179867396480,6306817346711481600,132727279189258656000 %N A346550 Expansion of Sum_{k>=0} k! * x^k * (1 + x)^(k+1). %H A346550 Seiichi Manyama, <a href="/A346550/b346550.txt">Table of n, a(n) for n = 0..449</a> %F A346550 a(n) = Sum_{k=floor(n/2)..n} k! * binomial(k+1,n-k). %F A346550 a(n) = A240172(n-1) + A240172(n) for n > 0. %F A346550 a(n) = (n-2) * a(n-1) + 2 * (n-1) * a(n-2) + (n-2) * a(n-3) for n > 2. %F A346550 a(n) ~ exp(1) * n! * (1 - 1/n + 3/(2*n^2) - 2/(3*n^3) - 47/(24*n^4) + 49/(120*n^5) + 6421/(720*n^6) + ...). - _Vaclav Kotesovec_, Dec 11 2021 %t A346550 a[n_] := Sum[k! * Binomial[k + 1, n - k], {k, Floor[n/2], n}]; Array[a, 22, 0] (* _Amiram Eldar_, Nov 30 2021 *) %o A346550 (PARI) a(n) = sum(k=n\2, n, k!*binomial(k+1, n-k)); %o A346550 (PARI) a(n) = if(n<3, 2^n, (n-2)*a(n-1)+2*(n-1)*a(n-2)+(n-2)*a(n-3)); %o A346550 (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, k!*x^k*(1+x)^(k+1))) %Y A346550 Cf. A184185, A240172. %K A346550 nonn %O A346550 0,2 %A A346550 _Seiichi Manyama_, Nov 30 2021