This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346551 #20 Jan 02 2022 10:02:59 %S A346551 1,2,10,18,126,5418,141174,6643507266,157486189806 %N A346551 3-Sondow numbers: numbers k such that p^s divides k/p + 3 for every prime power divisor p^s of k. %C A346551 Numbers k such that A235137(k) == 3 (mod k). %C A346551 A positive integer k is a 3-Sondow number if satisfies any of the following equivalent properties: %C A346551 1) p^s divides k/p + 3 for every prime power divisor p^s of k. %C A346551 2) 3/k + Sum_{prime p|k} 1/p is an integer. %C A346551 3) 3 + Sum_{prime p|k} k/p == 0 (mod k). %C A346551 4) Sum_{i=1..k} i^phi(k) == 3 (mod k). %H A346551 Github, <a href="https://jonathansondow.github.io/">Jonathan Sondow (1943 - 2020)</a> %H A346551 J. M. Grau, A. M. Oller-Marcén, and D. Sadornil, <a href="https://arxiv.org/abs/2111.14211">On µ-Sondow Numbers</a>, arXiv:2111.14211 [math.NT], 2021. %H A346551 J. M. Grau, A. M. Oller-Marcen and J. Sondow, <a href="https://arxiv.org/abs/1309.7941">On the congruence 1^n + 2^n +... + n^n = d (mod n), where d divides n</a>, arXiv:1309.7941 [math.NT], 2013-2014. %t A346551 Sondow[mu_][n_]:= Sondow[mu][n]= Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]] %t A346551 Select[Range[1000000],Sondow[3][#]&] %Y A346551 Cf. A054377, A007850, A235137, A348058, A348059. %Y A346551 (-1) and (-2) -Sondow numbers: A326715, A330069. %Y A346551 1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557. %K A346551 nonn,more %O A346551 1,2 %A A346551 _José María Grau Ribas_, Dec 04 2021 %E A346551 a(8)-a(9) from _Martin Ehrenstein_, Dec 31 2021