This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346554 #16 Jan 21 2022 07:51:11 %S A346554 1,4,7,9,20,36,252,10836,282348,13287014532,314972379612 %N A346554 6-Sondow numbers: numbers k such that p^s divides k/p + 6 for every prime power divisor p^s of k. %C A346554 Numbers k such that A235137(k) == 6 (mod k). %C A346554 A positive integer k is a 6-Sondow number if satisfies any of the following equivalent properties: %C A346554 1) p^s divides k/p + 6 for every prime power divisor p^s of k. %C A346554 2) 6/k + Sum_{prime p|k} 1/p is an integer. %C A346554 3) 6 + Sum_{prime p|k} k/p == 0 (mod k). %C A346554 4) Sum_{i=1..k} i^phi(k) == 6 (mod k). %C A346554 Other numbers in the sequence: 13287014532, 314972379612, 50942529501358130464240627566516 %H A346554 Github, <a href="https://jonathansondow.github.io/">Jonathan Sondow (1943 - 2020)</a> %H A346554 J. M. Grau, A. M. Oller-Marcén and D. Sadornil, <a href="https://arxiv.org/abs/2111.14211">On µ-Sondow Numbers</a>, arXiv:2111.14211 [math.NT], 2021. %H A346554 J. M. Grau, A. M. Oller-Marcen and J. Sondow, <a href="https://arxiv.org/abs/1309.7941">On the congruence 1^n + 2^n + ... + n^n = d (mod n), where d divides n</a>, arXiv:1309.7941 [math.NT], 2013-2014. %t A346554 Sondow[mu_][n_]:=Sondow[mu][n]=Module[{fa=FactorInteger[n]},IntegerQ[mu/n+Sum[1/fa[[i,1]],{i,Length[fa]}]]] %t A346554 Select[Range[10000000],Sondow[6][#]&] %o A346554 (PARI) isok(k) = {my(f=factor(k)); for (i=1, #f~, my(p=f[i,1]); for (j=1, f[i,2], if ((k/p + 6) % p^j, return(0)));); return(1);} \\ _Michel Marcus_, Jan 17 2022 %Y A346554 Cf. A054377, A007850, A235137, A348058, A348059. %Y A346554 (-1) and (-2) -Sondow numbers: A326715, A330069. %Y A346554 1-Sondow to 9-Sondow numbers: A349193, A330068, A346551, A346552, A346553, A346554, A346555, A346556, A346557. %K A346554 nonn,more %O A346554 1,2 %A A346554 _José María Grau Ribas_, Jan 16 2022 %E A346554 a(10)-a(11) verified by _Martin Ehrenstein_, Jan 21 2022