This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346576 #58 Sep 13 2021 10:05:51 %S A346576 0,0,0,0,0,0,0,0,0,0,0,1,2,0,4,3,2,1,10,0,12,0,10,2,16,4,12,10,20,0, %T A346576 12,20,0,12,26,3,10,20,31,0,10,24,35,0,14,10,20,32,42,0,12,21,32,45, %U A346576 10,20,30,40,50,0,14,24,36,10,20,31,42,50,64,0,16,27,10 %N A346576 Let x run through the list of numbers with no zeros (A052382); replace each digit d of x by the digit (x mod d). %C A346576 Graph of the sequence generates a fractal-like image. %H A346576 Michel Marcus, <a href="/A346576/b346576.txt">Table of n, a(n) for n = 1..7380</a> %H A346576 Rakesh Khanna A, <a href="/A346576/a346576.pdf">Graph of the sequence</a> %e A346576 If x = 247 we get 132 as 247 mod 2 = 1, 247 mod 4 = 3, and 247 mod 7 = 2. As 247 is the 205th zeroless number, a(205) = 132. %t A346576 f[n_] := FromDigits @ Mod[n, IntegerDigits[n]]; f /@ Select[Range[100], !MemberQ[IntegerDigits[#], 0] &] (* _Amiram Eldar_, Jul 26 2021 *) %o A346576 (C) %o A346576 #include <stdio.h> %o A346576 #define START 1 %o A346576 #define END 1000 %o A346576 int main(){ %o A346576 unsigned int R,N,M,power_cntr; %o A346576 int mod1,mod2; %o A346576 for(N=START;N<=END;N++){ %o A346576 R=N; %o A346576 M=0; %o A346576 power_cntr=1; %o A346576 while(R!=0){ %o A346576 mod1=R%10; %o A346576 if(mod1==0) break; %o A346576 mod2=N%mod1; %o A346576 M+=mod2*power_cntr; %o A346576 power_cntr*=10; %o A346576 R=R/10;} %o A346576 if(mod1!=0) printf("%u %u\n",N,M);} %o A346576 return 0;} %o A346576 (PARI) a(m) = my(d=digits(m)); fromdigits(Vec(apply(x->(m % x), d))); %o A346576 apply(x->a(x), select(x->vecmin(digits(x)), [1..100])) \\ _Michel Marcus_, Jul 24 2021 %o A346576 (Python) %o A346576 def f(k, digits): return int("".join(map(str, map(lambda x: k%x, digits)))) %o A346576 def aupton(terms): %o A346576 alst, k = [], 1 %o A346576 while len(alst) < terms: %o A346576 s = str(k) %o A346576 if '0' not in s: alst.append(f(k, list(map(int, s)))) %o A346576 k += 1 %o A346576 return alst %o A346576 print(aupton(73)) # _Michael S. Branicky_, Aug 22 2021 %Y A346576 Cf. A034838, A052382. %Y A346576 See A347323 for another version. %K A346576 nonn,base,look %O A346576 1,13 %A A346576 _Rakesh Khanna A_, Jul 24 2021