cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346578 a(n) = (1/(4*n)) * Sum_{d|n} mu(n/d) * binomial(4*d,d).

This page as a plain text file.
%I A346578 #7 Jul 25 2021 02:41:08
%S A346578 1,3,18,112,775,5598,42287,328640,2615085,21191125,174303162,
%T A346578 1451424960,12211799223,103655906781,886568152950,7633233227520,
%U A346578 66105170315083,575445689879247,5032380942945321,44191451767056400,389514699012969936,3444925385161998518,30561576846316109863
%N A346578 a(n) = (1/(4*n)) * Sum_{d|n} mu(n/d) * binomial(4*d,d).
%C A346578 Inverse Euler transform of A002293.
%C A346578 Moebius transform of A261497.
%t A346578 Table[(1/(4 n)) Sum[MoebiusMu[n/d] Binomial[4 d, d], {d, Divisors[n]}], {n, 23}]
%o A346578 (PARI) a(n) = sumdiv(n, d, moebius(n/d)*binomial(4*d,d))/(4*n); \\ _Michel Marcus_, Jul 24 2021
%Y A346578 Cf. A002293, A005810, A008683, A022553, A261497, A346577, A346579, A346580, A346581, A346582.
%K A346578 nonn
%O A346578 1,2
%A A346578 _Ilya Gutkovskiy_, Jul 24 2021